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1 Introduction

Understanding how information is incorporated into stock prices is a fundamental question in

finance. The extensive behavioral finance literature documents a number of channels through

which limited investor attention leads to slow diffusion of information into stock prices.1

In some of these studies, the information that investors are slow to respond to comes from

economically-linked firms, and in particular firms in the same industry. For example, Moskowitz

and Grinblatt (1999) document a phenomenon called industry momentum, the tendency for

stocks to follow their industry returns over subsequent months. Similarly, Hou (2007) argues

that small firms in an industry tend to respond to industry-specific information. While it seems

intuitive that the interdependence of firms within an industry has important asset pricing impli-

cations, measuring the connectedness between industry peers in a unified way has remained a

challenge in the literature.

Motivated by this issue, we apply recent advances in the network literature to estimate the

intra-industry connectedness for US publicly traded companies going back to the 1920s. Our

estimation relies on volatility spillovers and is derived from co-movements in the stock mar-

ket based on the methodology proposed by Diebold and Yilmaz (2014) and its extension for

the estimation of larger networks in Demirer et al. (2017). This methodology requires high-

frequency (e.g., daily) volatility estimates as an input. Since realized daily volatility estimates

require the use of intraday data, which are only available after 1983, we instead estimate con-

ditional volatilities using the GARCH model of Bollerslev (1986). Using the volatilities as

inputs, we estimate generalized forecast error variance decomposition network matrices which

indicate how firms within an industry are connected to each other.

With the network decomposition matrices in hand, we develop a new measure of central-

ity, termed ’composite centrality,’ which combines several dimensions of connectivity between

1See, e.g., Hirshleifer and Teoh (2003) for a theoretical model and Richardson, Tuna, and Wysocki (2010) for
a survey of empirical studies that show investor underreaction to publicly available accounting information.
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firms in an industry. Using principal component analysis (PCA), we extract the common vari-

ation between three of the most prominent measures of network centrality in the literature

- degree, closeness, and eigenvector centrality. We define "composite centrality" as the first

principal component of the three centrality measures for each cross-section in our sample.

Next, we study the determinants of composite centrality. Our large sample of all eligible

publicly traded firms in the US allows us to see how network centrality is related to other

proxies for the importance of a firm in a given industry. We find that the single most important

determinant of composite centrality is the firm’s market share of total revenues within the

industry. This is a remarkable result, given that our composite centrality measure does not

rely on any accounting data for its estimation. We also find that firms which are central in

their industries are larger, have high past performance, invest less, and have lower operating

leverage.

In the second part of the paper we examine the implications of network centrality on asset

pricing and cross-sectional intra-industry trading strategies in particular. Our main hypothesis

is that if our industry network estimates have any merit and investors are slow to incorporate in-

formation about the inter-connectedness between stocks in a given industry, we should be able

to exploit this slow diffusion of information and design profitable trading strategies. Moreover,

if our hypothesis is true, we should also expect the influence of peripheral (i.e., not central)

firms to be more important, since it is more difficult for investors to process those linkages.

Using our network and composite centrality estimates, we develop "peer momentum" trad-

ing strategies, which sort stocks on weighted average of their industry peers’ past month re-

turns. The weights come from our network decomposition matrices, which measure the con-

nection between pairs of firms within an industry. We create a simple "peer momentum"

strategy that uses all stocks within an industry to create our signal, and a "peripheral peer

momentum" strategy that only uses the peripheral firms (i.e., those with composite centrality

lower than the 90th percentile within the industry) to create our signal. The strategies are all
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value-weighted long/short portfolios from quintile sorts using NYSE breakpoints on our peer

momentum signals.

Our peer momentum strategies are very profitable. A simple peer momentum yields average

returns of 74 basis points per month (t-statistic of 5.69) between 1928 and 2020, with alphas

ranging between 59 and 74 basis points per month depending on the factor model used. As

expected, peripheral peer momentum (PPM) performs even better, achieving an average return

of 80 basis points per month (t-stat of 6.25) and statistically significant alphas ranging between

66 and 80 basis points per month.

Given the stronger performance of the PPM strategy, we focus on it for the rest of the paper

and study its robustness and link to industry momentum. In Fama-MacBeth regressions, PPM

has strong predictive power for the cross-section of stock returns. In univariate Fama-MacBeth

regressions, PPM has a t-statistic of 8.67. Controlling for classical individual stock momentum

and industry momentum, as well as other common cross-sectional predictors such as size,

value, profitability, investment, and short-term reversals, PPM maintains its strong predictive

power with a t-statistic of 7.37.

Our PPM trading strategy also survives a battery of robustness tests. We show that most

changes in strategy construction (e.g., decile sort, all-stock breaks, or equal-weighting) yield

even better performance. The strategy works well in subsamples and within size quintiles. It

also does not appear to be a different anomaly in disguise. Using double sorts, we show that it

survives controlling for the 23 anomaly signals in Novy-Marx and Velikov (2016).

Finally, we study the relation between our peripheral peer momentum strategy and the

industry momentum strategy of Moskowitz and Grinblatt (1999). The two strategies share

plenty of the steps in the construction of the signals used for sorting stocks. Both PPM and

industry momentum signals are weighted-averages of the past month’s returns to stocks in the

same industry. What differentiates PPM from industry momentum, however, is the weights

used to calculate the signals. For a given stock ABC, industry momentum uses the value-
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weighted past month’s return of ABC’s industry. PPM, on the other hand, weights the past

month’s return for each ofABC industry peers by the cell in the network decomposition matrix

that indicates that peer’s influence on ABC.

We show that PPM remains strongly significant controlling for industry momentum. Us-

ing conditional double sorts and spanning tests controlling for one another, PPM continues to

generate significant average returns while industry momentum’s returns become diluted. This

evidence indicates that our network matrices and their coupling with the composite centrality

measure reveal new information about the impact of peripheral peers on a given firm’s stock

returns and that investors do not incorporate such information in a timely manner.

Our paper contributes to several different strands of the literature. While multiple papers

capture the asset pricing implication of economically linked firms, those papers typically focus

on a particular channel through which these links operate (e.g., Moskowitz and Grinblatt, 1999;

Cohen and Frazzini, 2008). In contrast, our approach relies on the network estimation to extract

only the relevant information about the links between firms in the same industry from their

stock returns. Thus, our measure likely captures multiple channels and contributes to studies

in this area.

The most closely related paper to ours is Hoberg and Phillips (2018), which introduces

text-based industry momentum. Using their text-based network industry classification (TNIC)

from Hoberg and Phillips (2016) to identify peer firms, Hoberg and Phillips (2018) propose

an alternative peer momentum strategy that yields strong profits in a short sample period (July

1997-December 2012). Our peer momentum strategies are different from text-based industry

momentum with respect to the industry classification of peers and the ranking period of signal

construction. TNIC is based on 10-K (SEC EDGAR) product descriptions where each firm

has its own distinct set of competitors. In Fama French industry classification (FFIC), how-

ever, peers are the same for each firm operating in the same industry. Hoberg and Phillips

(2018) show that TNIC overlaps on a limited domain with FFIC; hence, their text-based in-
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dustry momentum becomes distinct from classic industry momentum with one month ranking

period. Underlining the distinct and less visible nature of peer connections in TNIC, Hoberg

and Phillips (2018) further show that their text-based industry momentum is profitable at dif-

ferent ranking periods varying from one month to one year. Our peer momentum strategies

are built upon recent volatility spillovers among peers and are profitable at one month ranking

period, however.

Another related paper is Lee, Sun, Wang, and Zhang (2019) technology momentum. Moti-

vated by Bloom, Schankerman, and Van Reenen (2013) technological closeness measure, Lee

et al. identify technologically linked firms and develop another one-month tech-peer momen-

tum strategy. Unlike our peer momentum and classic industry momentum strategies, however,

technologically linked firms often operate in different industries.

Still another related paper is Ali and Hirshleifer (2020) connected firm momentum. For

a focal firm, this momentum signal is the weighted average return of all stocks linked to that

firm where the linkage is measured by the number of common analysts covering the focal firm

and the linked firm. Their portfolio weights and momentum signal share some similarities with

ours, but there are significant differences. First, common analyst coverage does not necessar-

ily mean common industry membership. In fact, two firms from different industries can be

followed by common analysts (Gomes, Gopalan, Leary, and Marcet, 2017). Second, common

analyst coverage is not the same as industry peer influence, which our paper uses as portfolio

weights. The number of common analysts can be similar for two large firms that operate in

the same industry whereas our network matrices report different influences of two large peers

on each other. Finally, common analyst coverage data are only available in recent sample

(1983-2015) whereas our industry peer influence data go back to 1920s.

It is also worth emphasizing that our paper has a broader scope than Hoberg and Phillips

(2018), Lee, Sun, Wang, and Zhang (2019), and Ali and Hirshleifer (2020). We also contribute

to the network literature by being the first paper to estimate these networks for the entire eli-

5



gible cross-section of US publicly traded firms going back to the 1920s. We also contribute to

the network literature by introducing a new network centrality measure that captures multiple

dimensions of connectedness. We show that our composite centrality measure is correlated to

variables we would intuitively expect to be related to network centrality, and can be success-

fully applied to identify central and peripheral firms in an asset pricing application.

While we focus on an asset pricing application in this study, we believe our contribution

opens new avenues for research. Peer interactions are proven to be quite important in different

research areas such as fire-sales (Acharya, Bharath, and Srinivasan, 2007), relative performance

evaluation (Albuquerque, 2009), corporate capital structures and financial policies (Leary and

Roberts, 2014), among others. Future studies could make further advancements in these fields

using our network decomposition estimates and composite centrality measure.2

2 Measuring Network Connectedness

2.1 Estimation methodology

Our analysis is based on network connectivity among firms in a given industry and across time.

While there are several ways in which two firms can be connected with each other, there is

no unique methodology to study networks nor one that encompasses all these possible con-

nectivity dimensions. In this paper, we focus on connectivity derived from co-movements in

the stock market based on the methodology proposed by Diebold and Yilmaz (2014) (DY2014

hereafter) and its extension to larger networks in Demirer, Diebold, Liu, and Yilmaz (2017)

(DDLY2017 hereafter). We chose this methodology for several reasons. First, it is a well

established methodology in the financial econometrics and financial networks literature. Sec-

ond, we believe it is suitable for applications in asset pricing (e.g., peer momentum investment

2Industry network data including measures for peer connectedness and network centrality are available from
the authors upon request.
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strategies), since it is based on stock market co-movements. Third, it captures several ways in

which firms can be connected without the need to specify the actual source of the shock.

2.2 Volatility estimation

We estimate the network for each Fama-French industry every June starting 1928 until 2020.

Each industry network is based on the volatility connectedness of the public firms that operate

in the same industry. The volatility is, however, a latent variable and needs to be estimated.

Diebold and Yilmaz (2014) study the network of financial institutions by employing daily

realized stock volatilities as their volatility measure. They estimate realized volatilities using

high frequency returns, which are available from 1999 onwards.

To extend the network estimation to the early periods of the 20th century, we construct

conditional volatility measures using daily stock returns and the GARCH model of Bollerslev

(1986). Daily returns are available at CRSP from 1926 onwards, and a GARCH(p,q) model

expresses the daily conditional volatility σ2
t as a function of its p lags and q lags of the squared

unexpected stock return u2
t :

σ2
t = α0 +

q∑
i=1

αiu
2
t-i +

p∑
j=1

βjσ
2
t-i (1)

Volatility estimations of individual stock returns start in June 1928 and repeat every year us-

ing all available historical data prior to the estimation date. Before estimating the GARCH(p,q)

models, we filter CRSP data in two different ways:

• We drop stocks that have missing daily return observations over a two year period that

precedes the estimation date. Similarly, we drop stocks that are infrequently traded: those

with zero return observations in five (or more) consecutive days in the recent two year

sample and those that have zero return observations 33% of the time (or more) in their

historical past relative to the estimation date. A minimum of 504 return observations with
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some frequent trading is necessary to produce reliable parameter estimates in a GARCH

model with an expanding window.

• We drop stocks that fail the Engle (1982) test for ARCH effects at 1% level. We run this

test to ensure that GARCH style models are appropriate to the data.

Figure 1 shows the coverage of our sample after the implementation of these filters. With

regard to the number of observations, the coverage is less than 50% of the CRSP universe for

most years and ranges from 10% in late 1920s to close to 80% in 2010. The coverage drops

mechanically at the opening of NASDAQ stock exchange and recovers slowly thereafter. With

regard to the market capitalization, however, the coverage exceeds 50% for most years and

reaches 90% towards the end of the sample. Such overrepresentation of large stocks is not

surprising because investors trade large stocks more frequently than small stocks.

Next, for each stock that passes these filters, we run four different GARCH specifications,

i.e. GARCH(1,1), GARCH(1,2), GARCH(2,1) and GARCH(2,2). Afterwards, we use the

Akaike Information Criterion to select the best specification. The daily conditional volatility

time series of the best specification starting from two years prior to the estimation date and end-

ing at the estimation date become inputs to the industry network model explained in subsection

2.3.

2.3 Connectedness estimation

2.3.1 Variance decomposition network estimation

The methodology consists of estimating Vector Autoregressive (VAR) models of daily log

volatility of stock returns on their own lags as well as those of other firms in the same industry.

To deal with the curse of dimensionality that can arise in certain industry-years from having

several firms, we use the shrinkage method extension of the DY2014 methodology proposed
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in DDLY2017 to estimate high dimensional VARs and ultimately networks. The final step of

the network estimation consists of using a generalized forecast error variance decomposition

based on the estimated VARs to pin down the weights of the edges connecting firms. This

decomposition depends on the forecasting horizon whose length can be chosen based on the

application at hand. According to DY2014, the connectedness horizon is important as it relates

to issues of dynamics connectedness as opposed to purely contemporaneous connectedness.

The estimated network matrix is both weighted and directed. By construction, all nodes

in the network are connected, yet the importance of the connections can vary significantly de-

pending on the weight. Each entry of the network matrix corresponds to a weight representing

the strength of the corresponding connection. While all nodes are connected to each other, the

matrix is not restricted to be symmetric since it is directed (e.g., node i may affect node j more

than the other way around). Consequently, the network matrix provides not only the strength

of connections but also allows weights to vary depending on the direction of a connection (i.e.,

from i to j vs from j to i).

We estimate a network matrix for each of the 49 Fama-French industries and each of the

93 years of data using a forecasting horizon of 10 days.3 The number of firms can significantly

vary across years as shown in Panel B of 1. In particular, at the beginning of the time series

some industries consist of only a few firms. As a result, we require a minimum of 5 firms

in order to estimate the network. This leads us to a final count of 3068 estimated networks.

Each firm corresponds to a node in the network, the names of which are listed in the rows and

columns of the network matrix, and the edge weights between them correspond to the entries

of the network.
3We chose this horizon as it allows for dynamics of connections to take place while not being overly long. For

example, the Basel accord requires a 10-day Value at Risk (VaR) horizon.
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2.3.2 Network centrality estimation

Centrality measures are widely used connectivity measures to study the topology of a network.4

These measures aim to answer the question of who is the most important or “central” node in

a given network. The answer to this question may vary depending on how we define what it

means to be “central.” For example, a node could be central because it has many connections

within the network (only direct connections matter) or it could be central because it is con-

nected to a few but well connected nodes (direct plus indirect connections matter). Several

measures of centrality have been proposed in the network literature, but we focus on three of

the most popular centrality measures as they have proven to complement each other well.

Mathematically, a network of K individuals can be represented by a K × K adjacency

matrix A of the network graph. By convention, elements in the ith row of A indicate which

nodes are affected by node i. The adjacency matrix is simply the transpose of the network

matrix.5 Consequently, the adjacency matrix considered in this paper is also weighted and

directed. Let [A]ij be the (i, j) element of the adjacency matrixA (i.e., ith row and jth column).

We define the following centrality measures:

(i) Degree centrality: This measure represents how well a node is connected in terms of

number of direct connections (in or out) and it is usually normalized by the number of total

possible connections from a node (i.e., K − 1). As a result, the normalized measure ranges

between 0 and 1. Formally, for node i we have:

Ci←j
d = #{j: [A]ji 6=0}

K−1 [In-degreei]

Ci→j
d = #{j: [A]ij 6=0}

K−1 [Out-degreei]

 Ci−j
d = Ci←j

d + Ci→j
d [Total-degreei] (2)

4For a detailed discussion on centrality measures see Jackson (2008).
5If W denotes the network matrix, then A = W ′. Therefore, elements in the ith row of W captures which

nodes affect node i. Although the network matrix representation is often more intuitive, centrality measures
are defined and coded in most software packages using the adjacency matrix notation. This is why we use the
adjacency matrix representation
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where Cd stands for degree centrality. The notation i ← j, i → j, and i − j indicates the

direction of a connection or lack thereof. The numerator #{j : [A]ji 6= 0} counts the number

of nodes j such that there is a connection from j to i (i.e., [A]ij 6= 0}). Similar interpretation

applies for #{j : [A]ij 6= 0}. Therefore, in-degree (out-degree) counts the number of connec-

tions to (from) a node i from (to) other nodes “j” in the network; while total degree measures

the total number of connections “in” and “out” for a given node i. Since there are at most

K − 1 possible connections “in” or “out” for a given node, the denominator K − 1 is simply a

normalizing factor that sets the measure between 0 and 1 (if desired). A high value of degree

centrality (i.e., closer to 1) corresponds to a high number of in, out, or total direct connections;

while a low value of degree centrality (i.e., closer to 0) corresponds to a low number of in, out,

or total direct connections.

This is the simplest measure of centrality. However, degree centrality overlooks several

important features of a network. For instance, it does not account for how well located a node

is in the network. That is, two nodes can have the same degree centrality but only one of them

may be key for information to get transmitted from/to other nodes (i.e., lie in the middle of

paths connecting many other nodes). The next measure takes some of these additional features

into account.

(ii) Closeness centrality: This measure reflects how close a node is, on average, to any other

node. Intuitively, it describes the extent of influence of a node on the network. Being close

to every other node can be important when something is transmitted through the network.

Formally, let l(j, i) be the (shortest) distance between i and j given by their shortest path.6,7

The closeness centrality of node i is defined by the inverse of the average length of the shortest

6If there is no path between j and i, the total number of vertices is used instead of the path length.
7Given that we have a weighted directed network, we compute the shortest path between node i and j by

summing the inverse weights involved in each path connecting the two nodes and then choosing the path with the
smallest value of total inverse weight.
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paths to/from any other node j in the graph:

Ci
cl = K − 1∑

j 6=i l(j, i)

Both these measures focus mostly on “quantity” rather than “quality” of connections. We

are also interested in assessing not only how close a node is to many other nodes, but also

whether it is connected to other “central” nodes or “key players” in the network. The last

measure is based on the premise that a node’s importance is determined by how important its

neighbors are.

(iii) Eigenvector centrality: This measure generalizes degree centrality by taking into account

the prestige of a node’s neighbors. The centrality of each vertex i is proportional to the sum of

centralities of its neighbors:

Ci
eg = 1

λ

∑
j:j 6=i

[A]ijCj
eg (3)

where Ci
eg (Cj

eg) stands for eigenvector centrality of node i (j); j ∈ M(i), M(i) is the set

of neighbors of i, and λ is a constant. The sum is over all nodes j different from i, and it

is weighted by the weight of the connection from j to i (i.e., [A]ij). Note that if there is no

connection from j to i, then the weight is 0. Equation (3) can be written in vector notation as

the eigenvector equation:

ACeg = λCeg (4)

A vector Ceg satisfying the above equation is an eigenvector of A. In general, there are mul-

tiple eigenvalues λ for which a non-zero eigenvector solution exists. However, the additional

requirement that all entries in the eigenvector must be non-negative implies (by the Perron-
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Frobenius theorem) that only the greatest eigenvalue of A results in the desired centrality

measure.8 The ith component of the eigenvector Ceg then gives the relative centrality score

of the vertex i. The eigenvector is only defined up to a common factor, so only the ratios of the

centralities of the vertices are well defined. In order to define an absolute score, we normalize

the eigenvector such that the sum over all vertices equals 1.

(iv) Composite centrality: Thus far, we have introduced three competing measures of central-

ity. While it is true that these measures are often times positively correlated, each is intended

to capture possibly unique features of the network topology. Furthermore, there is a priori no

compelling reason to use one of them over the others to pin down central nodes. Consequently,

we propose using a composite centrality measure that combines the information embedded in

all three of them.

Using principal component analysis (PCA), we extract the common variation between the three

centrality measures discussed above - degree, closeness, and eigenvector centrality. At the end

of each June of each year, we take an N × 3 matrix of the centrality measures, where N is the

number of stocks with available centrality measures, and run a PCA on that matrix. Then, we

define "composite centrality" as the first principal component (i.e., the eigenvector associated

with the highest eigenvalue) of the matrix, rescaled so that the centrality measure is positive

and adds up to one within each industry.

2.4 Understanding connectedness

In this subsection, we discuss how to interpret the estimated connectedness measures among

firms (i.e., network matrix and centrality measures). We use the beer and liquor industry as

a leading example to illustrate the several aspects of the network estimation. We also discuss

summary statistics across industries.

8See Newman (2016).
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2.4.1 Network matrix

Table 1 shows an example of a variance decomposition matrix (i.e., network matrix) corre-

sponding to the beer and liquor industry as of June 2006. The network matrix is 9 × 9 since

there are nine firms in this year for this industry. The names in the rows and columns corre-

spond to firms’ tickers. The off-diagonal values of the matrix correspond to the forecast error

variance decomposition and are interpreted as the importance of directional pairwise connec-

tions (i.e., network weights). The sum of the off-diagonal elements of the ith row gives the share

of the H-step forecast error variance of firm i coming from shocks arising in other firms. For

example, we see that Anheuser-Busch (BUD) is the most influential connection for Molson-

Coors (TAP) (i.e., 0.19 value in row TAP, column BUD or BUD→ TAP connection). While

the converse is also true, the weight of the TAP→ BUD connection is much lower (0.04). This

also serves to illustrate the directional feature of connections (i.e., A → B 6= B → A), which

is captured by the asymmetry of the network matrix.

For completeness, we also report diagonal values although they are of no interest for pair-

wise connections analysis and are, therefore, disregarded throughout the discussion. Also, each

row in the network matrix is standardized to sum to 1 to ease interpretation of weights. Lastly,

it is important to note that by construction all elements of the matrix are non-zero, and any

zeros displayed in the table are the result of rounding. This means that by assumption everyone

is connected to everyone although with possibly different strengths of connections.

2.4.2 Network centrality

Table 2 illustrates the four centrality measures discussed in section 2.3.2 using the beer and

liquor industry (June 2006) as an example. As explained in section 2.3.2, all centrality mea-

sures are standardized to sum to one. This is a useful normalization as it allow us to easily pin

down central nodes in a given year. Indeed, we are interested in the relative ranking of nodes
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based on their centrality as opposed to the absolute value the measure takes.

As expected, most centrality measures are positively correlated. However, closeness cen-

trality is mostly negatively correlated with other measures. This negative correlation is an ex-

ample of how the use of a set of centrality measures as opposed to only one can be beneficial.

Interestingly, our composite centrality measure, which combines the three individual measures,

is more aligned in terms of rank-order with eigenvector and total degree centrality for the beer

and liquor industry. Overall, the most central firms across all measures (except closeness) are

Anheuser-Busch and Molson-Coors. This makes sense since these are the largest firms in the

industry. In the third and fourth place of centrality we have Coca-Cola Bottling Company and

Pyramid Breweries. Similar to Anheuser-Busch and Molson-Coors, Coca-Cola Bottling Com-

pany has high degree centrality, whereas Pyramid Breweries is central from a closeness point

of view.

In addition to the beer and liquor industry example, we provide more detailed statistics

for our composite measure. Table 3 shows the industries with the bottom and top composite

centrality measure ranges across time. Given the high dimensionality of the data, we show

time evolution across three different years: 1930, 1970, and 2010. We also present summary

statistics for all industries across years in Table A.1 of the Appendix.

We observe that the composition of industries with the smallest and largest ranges of values

for composite centrality has changed over time. For example, in 1930, the Electrical Equipment

industry had the highest range of composite centrality estimates. Out of the five firms in it,

the industry was dominated by the Electric Storage Battery Company, which had a composite

centrality of 0.81, while the Westinghouse Electric and Manufacturing Company (a predecessor

of CBS Corp) had a zero composite centrality.

When we look at 2010, the industry with the highest composite centrality range, i.e. the

Textile industry, only had a range of 0.25. This difference could partially be attributed to the

fact that nowadays industries tend to have a lot more firms and that we rescale our composite
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centrality measure to add up to one within each industry. Yet, we still a significant dispersion

in centrality among industry peers. Interface Inc, a global commercial flooring manufacturer,

had the highest composite centrality measure of 0.27. UniFirst Corporation, a uniform rental

company, and Mohawk Industries, a carpet and flooring manufacturer, had the second and

third highest composite centrality measures of 0.17 and 0.12, respectively, while all other 10

companies had composite centrality measures less than 0.10.

Next, we show the relation between the composite centrality measure and the standard

centrality measures and firm characteristics using Fama-MacBeth regressions. The first three

columns of Table 4 show that the composite measure is positively related to each of the three

standard centrality measures that we discuss above, yet some of them have a larger footprint

than others. Specifically, eigenvector becomes the main driver of the composite measure, while

total degree and closeness have secondary and tertiary effects, respectively.

The last column of Table 4 shows the relation between the composite measure and impor-

tant firm characteristics such as size, book-to-market, market share, capital spending, operating

leverage, and past one-year return. We find that central firms tend to be large firms with valu-

able growth opportunities, control a high market share in their industry, invest less in physical

and R&D capital, have low operating leverage, and experienced significant gains in their stock

price over the past year. More important, confirming the conventional wisdom, high market

share appears as the most significant attribute of central firms. This evidence is quite remark-

able given that we do not use any accounting information while we estimate our centrality

measure. Hence, we argue that the empiricists can use our composite centrality measure to

distinguish central firms from peripheral ones.

2.4.3 Network dynamics

The network topology for each industry varies over time. Firms enter and exit the industry

thereby changing the number of peer firms and the distribution of market shares among peers.
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Similarly, some incumbent firms grow more than others or merge with their peers (or outsiders)

thereby increasing their market power in the industry. To show this dynamic feature of the net-

work, we analyze its evolution around an important event. Continuing with our beer and liquor

industry example, we study the evolution of its network around the Molson-Coors merger.

Molson-Coors was formed in 2005 through the merger of Molson of Canada, and Adolph

Coors of the United States. Adolph Coors became the parent of the merged company and

changed its name to Molson Coors Brewing Company. The resulting brewing giant controlled

11% of US beer sales volume in 2005 and ranked third after Anheuser-Busch of the United

States (controlling 49%) and SABMiller of Great Britain (controlling 18%). The merger was

announced in July 2004 and legally completed in February 2005, yet the audited financial

statements reflecting the revenue gains and the cost savings of the merger became available to

shareholders at Molson-Coors annual stockholder meeting in May 2006.

Hence, we take the perspective of Coors investors and analyze the evolution of the beer and

liquor industry by comparing its network structure as of June 2004 with that as of June 2006.

This two-year gap is also consistent with the two-year (504 trading day) rolling window of our

network estimation procedure.

Figure 2 displays both networks. The network on the top pertains to June 2004, whereas

the network on the bottom corresponds to June 2006. Each bubble reflects a node (incumbent

firm) in the network and each arrow reflects the link among two industry peers. The size of each

bubble is determined by the composite centrality measure of the incumbent firm attached to the

node and it is standardized across all years for comparison purposes. The larger the centrality

measure, the more influential (i.e., central) the incumbent firm is in the network. In this regard,

the bottom graph provides a visual representation of the centrality measures in Table 2. Darker

edge colors represent stronger connections based on network weights; cutoff points are based

on the 0th, 40th, 60th, 80th, 90th,100th average quantiles across all years. Since the network is

directed, we use curved edges when directional links between same pair of nodes (i.e., A→ B
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vs B → A) fall in different buckets.

In June 2004, the beer and liquor industry had two central firms, namely Anheuser-Busch

(ticker: BUD) and Adolph Coors (ticker: RYD). Anheuser-Busch was the largest brewery in

the industry, but it has experienced moderate sales growth since the beginning of 2000 (21%

increase from December 1999 to December 2003). Adolph Coors is the third largest brewery,

but it has almost doubled its sales since the beginning of 2000 (94% increase). The second

largest brewery (Miller) is not shown in the network as its parent (SABMiller) was not listed

in NYSE. The industry also included other noncentral breweries, wineries, and hard liquor

producers.

Over the two-year period from June 2004 to June 2006, the beer and liquor industry ob-

served several structural changes. Anheuser-Busch continued to be a central firm and increased

its influence in the industry by preserving its US market share and expanding ambitiously to

international markets such as China and UK. Molson-Coors emerged as an important new en-

tity after the merger. Compared to its pre-merger levels, the surviving parent company (Adolph

Coors) experienced a 28% increase in net sales. These enhancements in market power are vis-

ible through the increases in the centrality measures of both companies in the network ( 90%

and 20% increase for BUD and TAP respectively).

Several other changes in the network are worth mentioning. Pyramid Breweries, a micro-

brewery specializing in craft beers acquired a private craft beer firm (Portland Brewing) and in-

creased its power in the network. Similarly, Constellation Brands, an important wine producer,

acquired another wine producer in the network (Robert Mondavi). Golden State Vintners was

sold to a group of private investors and exited the industry. Brown-Forman, which owns valu-

able liquor brands such as Jack Daniels, changed its industry classification after altering its

business focus from liquor production to wholesale trade.
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3 Peer Momentum

3.1 Strategy construction

This subsection explains the construction of two alternative peer momentum strategies that we

employ throughout the paper. The first strategy is simple peer momentum. For each firm in

each industry, we track the past performance of its peers and form a peer impact portfolio.

Simple peer momentum is the signal that captures the past one-month return of this portfolio.

To illustrate the portfolio construction, we use the network matrix of beer & liquor industry

in Table 1. Specifically, we set the own impacts reported as diagonal elements in the network

matrix to zero and rescale the other elements such that each row adds up to one. This procedure

gives us a new matrix that includes the portfolio weights of the peer impact portfolio. The ele-

ments in the first row, for example, represent the weights for Coca-Cola Bottling Consolidated

Company (ticker: Coke). Multiplying these portfolio weights by the past one-month returns of

Coke’s peers yields the simple peer momentum signal for Coke. Similar calculations produce

the simple peer momentum signals for other firms in the industry.

The second strategy is peripheral peer momentum. For each firm in each industry, we track

the past performance of its peers except those whose composite centrality measure is at the 90th

percentile of the industry or above and form an alternative peer impact portfolio. Specifically,

we set the own impacts as well as the impacts of the most central firm(s) in the industry to

zero and rescale the other elements such that each row adds up to one. Continuing with the

beer & liquor industry example, we assign zero weights to Anheuser Busch’s (ticker: Bud) past

returns in peer impact portfolios (see Table A.2 for details). Multiplying the resulting portfolio

weights by past one-month returns yields the peripheral peer momentum signals for the firms

in beer & liquor industry.

We implement these signal construction techniques to each industry at the end of June each

year t. The portfolio weights that we use in these techniques are the same from June of year t
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to May of year t+1. The past one-month returns vary each month, however, thereby generating

different signals for each firm each month. Once we collect all signals, we sort stocks on them,

form our simple and peripheral peer momentum portfolios, and rebalance them monthly.

3.2 Strategy performance

We form five value-weighted portfolios on simple and peripheral momentum over the sample

period July 1928-December 2020. Quintile 1 is the loser portfolio holding stocks with low

(L) peer momentum, whereas Quintile 5 is the winner portfolio holding stocks with high (H)

peer momentum. In addition, we construct a zero-cost investment strategy that buys the win-

ner portfolio and sells the loser portfolio (H-L). We calculate the average returns of five peer

momentum portfolios and (H-L) strategy and report them in Table 5.

For each peer momentum (H-L) strategy, we also test whether it can add significantly to

the investment opportunity set. To answer this question, we run spanning tests and regress (H-

L) return on market excess return, Fama and French (1993) three factors, Carhart (1997) four

factors including classic momentum, and Fama and French (2015) five factors. A significant

intercept term (alpha) would indicate that adding a peer momentum strategy to the investment

opportunity set generates an attainable Sharpe ratio that significantly exceeds that which can be

achieved with Fama-French strategies alone. Furthermore, if the latter factor portfolios capture

risk dimensions that investors care about, the regression coefficients convey useful information

about the riskiness of peer (H-L).

Table 5 reports the average returns and alphas (intercepts) of the regressions. Panel A covers

simple peer momentum. Average returns increase monotonically from the loser portfolio (L)

to the winner portfolio (H), and (H-L) strategy earns an average return of 0.74% per month

with a t-statistic of 5.69. The abnormal returns relative to the CAPM and the three-, four-, and

five-factor models are 0.74%, 0.72%, 0.59% and 0.63% per month, respectively. Adding the
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classic momentum factor (UMD or up minus down) reduces the intercept terms slightly, yet the

abnormal returns are still statistically and economically significant. In short, one-month peer

momentum is a distinct anomaly, which can contribute significantly to investment opportunity

set, and the risks embedded in Fama and French factors do not affect its profits.9

Panel B of Table 5 reports the same statistics for peripheral peer momentum. Average

returns increase monotonically from the loser portfolio (L) to the winner portfolio (H), and (H-

L) strategy earns an average return of 0.80% per month with a t-statistic of 6.25. The zero-cost

peripheral peer momentum strategy offers both higher rewards and lower volatilities than its

simple momentum counterpart. In an unreported simple regression of the peripheral (H-L) on

simple (H-L), we also estimate an alpha of 0.14% per month with a t-statistic of 3.21. This

evidence shows that excluding the most central firms from strategy construction increases the

Sharpe ratio of peer momentum strategies.

Figure 3 further illustrates the benefits of the latter exclusion using cumulative returns. A $1

investment in winner-minus-loser peripheral momentum portfolio in June 1928 yields $2,714

in December, 2020. Similar industry-based winner-minus-loser strategies yield lower gains,

and classic one-year price momentum is the least profitable strategy due to its sizable crashes.

Hence, we focus mainly on peripheral peer momentum strategy hereafter.

Table 6 shows the results of the Fama-MacBeth regressions of firm returns on (peripheral)

peer momentum, classic price momentum (measured over twelve to two months horizon), one-

month industry momentum and other important firm characteristics (controls) such as size

(log(ME)), book-to-market (log(B/M)), gross profits-to-assets (GP/A), real investment, and

short-run reversal r1,0. The sample period covers July 1963 through December 2020.

The first specification of Table 6 shows that peer momentum is an important predictor

for the cross-section of returns. Firms whose industry peers performed well over the previ-

9We refer the interested reader to Table A.3 in the appendix for the loadings of peer momentum portfolios on
Fama and French (2015) factors.
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ous month generate higher average returns than those whose peers performed poorly. The

second and third specifications control for classic price momentum and one-month industry

momentum, respectively. The peer momentum is almost orthogonal to classic price momen-

tum, whereas controlling for industry momentum somewhat lowers the predictive ability of

peer momentum.

The fourth specification reproduces the well-known predictive relations between impor-

tant firm characteristics and future stock returns in our sample. Firms with low market eq-

uity, high book-to-market, high gross profitability, low investment and low recent return (over

the previous month) earn higher average returns than those that have high market equity, low

book-to-market, low gross profitability, high investment and high recent return. The fifth spec-

ification brings all predictive variables together to highlight our contribution. We find that peer

momentum has strong incremental power in predicting future stock returns in the presence of

important characteristics studied in asset pricing literature.

3.3 Relation to industry momentum

The Fama-MacBeth regressions of Table 6 suggest that peer momentum predicts average re-

turns. One can criticize these regressions because they evaluate each observation equally and

thereby putting a lot of weight on micro-cap stocks. In addition, these regressions are sensitive

to outliers and can impose a potentially misspecified parametric relation between explanatory

variables (in particular, between peer momentum and industry momentum), which can blur the

economic significance of the results. This subsection attempts to address these issues by con-

sidering the performance of value-weighted portfolios sorted on peer momentum and industry

momentum and non-parametrically testing the hypothesis that peer momentum is subsumed by

industry momentum and vice versa.

We first check whether the spread in average returns on peer momentum portfolios is prof-
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itable controlling for industry momentum. Hence, we sort stocks initially into five portfolios

based on industry momentum. Then, within each quintile, we sort stocks into five portfolios

based on peer momentum.

Panel A of Table 7 shows the average returns of 5 x 5 industry momentum and peer momen-

tum portfolios. Within the low industry momentum quintile, average returns increase mono-

tonically from low peer momentum portfolio to high peer momentum portfolio. The long/short

high-minus-low peer momentum strategy earns 0.74% per month. Controlling for Carhart

(1997) four factors has minimal impact on the latter strategy as it yields an alpha of 0.66% per

month.

Next, we average the returns of each peer momentum quintile over the five industry mo-

mentum portfolios. Thus these quintile peer momentum portfolios control for differences in

industry momentum. The last row in Panel A of Table 7 reports their average returns as well

as that of the corresponding winner-minus-loser peer momentum strategy.

The unconditional peer momentum strategy of buying winners and selling losers is highly

profitable and yields an average return of 0.80% per month (see Table 5). Controlling for

industry momentum reduces the magnitude of this profit to 0.30% per month, yet it is still eco-

nomically significant and statistically different from zero (t-statistic: 3.32). Although the two

industry-based momentum strategies are highly correlated with one another, peer momentum

captures additional profits beyond industry momentum.

Finally, we change the order of the conditional sort to check whether the spread in average

returns on industry momentum portfolios is profitable controlling for peer momentum. In this

alternative double sort, we sort stocks initially into five portfolios based on peer momentum.

Then, within each quintile, we sort stocks into five portfolios based on industry momentum.

Panel B of Table 7 shows the average returns of 5 x 5 peer momentum and industry momen-

tum portfolios. Controlling for peer momentum distorts the cross-sectional relation between

average returns and industry momentum characteristic. In fact, the long/short high-minus-low
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industry momentum strategy fails to earn significant profits at the 5% significance level in any

peer momentum quintile. Next, we average the returns of each industry momentum quintile

over the five peer momentum portfolios. Controlling for peer momentum reduces the magni-

tude of industry momentum profits to 0.23% per month, which is only marginally significant

(t-statistic: 2.06). In sum, peer momentum helps explain industry momentum.

Our results are robust to controlling for classic momentum or running spanning tests. For

example, we repeat the same double-sort exercises using peer momentum and classic mo-

mentum signals. Table A.4 in the appendix shows that neither momentum strategy subsumes

the other. Spanning tests using peer momentum, industry momentum and classic momentum

long/short strategies produce similar results. Table A.5 in the appendix shows that peer mo-

mentum adds significantly to the investment opportunity set, spans industry momentum, and is

unrelated to classic momentum over the sample period July 1928-December 2020.

3.4 Robustness

3.4.1 Placebo test

An important contribution of this paper is to measure peer interactions. For each firm in each

Fama-French industry, for example, our network analysis identifies its peers and quantifies

how much it is influenced by them using a variance decomposition matrix (see Table 1). Its

diagonal elements show firms’ own contribution, whereas off diagonal elements show peer

contributions. We use off-diagonal elements to construct peer momentum signals because they

help us quantify lead-lag relations among peers.

One can question the usefulness of our network approach in constructing peer momentum

signals. For instance, one could argue that the variance decomposition matrix provides little

value and that alternative portfolio weights could generate more profits than the weights of our

peer momentum strategy. We alleviate such concerns by conducting a placebo test.
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At the end of each month, we replace the variance decomposition matrix of an industry with

a random matrix of the same size using a draw from the log-normal distribution. Afterwards,

we set the diagonal elements of this random matrix to zero and rescale its off-diagonal elements

such that each row adds up to one. We multiply the resulting weights by one-month past returns

of the firms in the industry to calculate placebo momentum signals. We collect these signals in

each industry each month and construct a time series for holding period returns of a long/short

winner-minus-loser placebo momentum strategy.

To compare the performance of peer momentum strategy with that of a placebo momentum

strategy, we compute three statistics. The first statistic is the average return over the full sample

reflecting the rewards of the strategy. The second and third statistics are the intercept terms

(alphas) from simple spanning regressions of one winner-minus-loser portfolio on the other.

A significant intercept term would indicate that the strategy in the dependent variable would

provide improvements in the Sharpe ratio.

We compute these three statistics for a given placebo momentum draw, repeat the simu-

lation 1000 times, and report the distributions of the statistics in Figure 4. The upper panel

shows the distribution of average returns and that of their t-statistics. The average returns of

placebo momentum strategies vary between 0.50% and 0.69% and are significantly lower than

the average return of the peripheral peer momentum strategy (0.80%). The t-statistics of the

average returns vary between 4.80 and 6.59. The t-statistic of the peripheral peer momentum

strategy equals 6.25, which is greater than 98% percentile of the distribution. Hence, periph-

eral peer momentum strategy stands out as one of the most profitable industry based one-month

momentum strategies.

The middle panel of Figure 4 shows the distribution of placebo momentum alphas relative

to peripheral peer momentum strategy and that of their corresponding t-statistics. The alphas

vary between 0.003% and 0.190% and are mostly insignificant. The 90th percentile of the t-

statistics equals 1.86, which is only marginally significant at 10% level. Hence, peripheral peer
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momentum strategy spans most of the industry based one-month momentum strategies.

The bottom panel of Figure 4 shows the distribution of peripheral peer momentum alphas

relative to placebo momentum strategies and that of their corresponding t-statistics. The alphas

vary between 0.16% and 0.34% and are all significant. The t-statistics vary between 1.96 and

3.88, and their median equals 2.99. Hence, our proposed peripheral peer momentum strategy

is not subsumed by any placebo momentum strategy.

Taken together, all these analyses reveal that the peer interactions suggested by our network

analysis provide valuable information to investors and that adding peripheral peer momentum

strategy to the investment opportunity set leads to significant improvements in Sharpe ratios.

3.4.2 Other robustness tests

So far we have shown that peripheral peer momentum is a strong predictor of returns in the

cross-section of equities. Its predictive power survives a battery of additional robustness tests,

the results for which are reported in the appendix. Table A.6 shows that the peripheral peer

momentum strategy works well across size quintiles. It reports a conditional double sort where

stocks are first sorted into quintiles based on their market capitalization using NYSE break-

points. Within each size quintile, stocks are further sorted based on their peripheral peer mo-

mentum in quintiles again. We report the average returns (Panel A), number of stocks (Panel

B), and average market capitalization (Panel B) for each of the resulting 25 portfolios. The

right-hand-side of Panel A also reports the returns, alphas, and loadings on the Carhart (1997)

four-factor model for the peripheral peer momentum long/short strategies within each size

quintile.

The peripheral peer momentum strategies yield significant returns across all five size quin-

tiles. Their average returns vary between 56 and 83 basis points per month, with t-statistics

exceeding three for all but the strategy executed within the smallest quintile. Even there, how-

ever, it yields 83 basis points per month and has an alpha of 94 basis points per month.
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Our main strategy reported in Table 5, Panel B is constructed using value-weighted port-

folios formed by a quintile sort using NYSE breakpoints. Table A.7 shows that the strategy

is robust to alternative strategy construction choices. Panel A uses equal-weighting instead of

value-weighting, Panel B uses all-stock breaks instead of NYSE breaks, and Panel C uses a

decile sort instead of a quintile one. Among all of these variations, the lowest performance is

shown in the four-factor alpha for the long/short strategy reported in Panel B, which equals 65

basis points per month, with a t-statistic of 4.83.

Table A.8 shows that our peripheral peer momentum strategy is not a different anomaly in

disguise. It reports excess returns on conditional peripheral peer momentum strategies, con-

structed from conditional 5x5 double sorts on each of the 23 anomaly signals from Novy-Marx

and Velikov (2016) first, and peripheral peer momentum second. All of the twenty-three con-

ditional peripheral peer momentum strategies generate sizeable and significant average returns.

The lowest performance comes from conditioning on industry momentum, where the condi-

tional peripheral peer momentum strategy yields 30 basis points per month with a t-statistic of

3.32.

Table A.9 further splits our sample in half and reports the performance of the peripheral

peer momentum strategy following the format of Table 5, Panel B. The strategy performes

slightly better in the first part of the sample (1928-1963), with average returns and alpha rang-

ing between 100 and 110 basis-points per month. However, even in the second half of the sam-

ple (1963-2020), the strategy continues to earn significant profits, with the average returns and

alpha varying between 50 and 69 basis points per month. Across both samples, the t-statistics

for the performance metrics we look at for the long/short portfolio exceed three everywhere.
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4 Conclusion

In this paper, we use recent advances in the network literature to estimate the intra-industry

connectedness for US publicly traded companies going back to the 1920s. We develop a

stock-level composite centrality measure that captures multiple dimensions of a stock’s in-

terdependence with its industry peers. Using our network and composite centrality estimates,

we develop two "peer momentum" trading strategies, which sort stocks based on their indus-

try peers’ past month average returns weighted by the peers’ influence in the industry. We

show that a "peripheral peer momentum" strategy that uses only peripheral stocks’ influence

as weights for the signal construction achieves an annualized Sharpe ratio of 0.65, survives a

battery of robustness tests, and spans industry momentum.

Our paper uses network estimation techniques in an asset pricing setting, and we are also

excited about potential future applications of network estimation more generally and the com-

posite centrality measure in particular. For example, Acharya, Bharath, and Srinivasan (2007)

show that industry-wide distress affects recovery rates. It is possible that adjusting for the im-

pact of each industry peer using our approach can better inform our estimates of loss-given

default. Similarly, Albuquerque (2009) shows that CEO compensation exhibits peer effects, so

it is possible that our estimated network structure can better inform us about executive com-

pensation practices. Finally, Leary and Roberts (2014) show that peer effects impact corporate

financial policies, so another potential application of our measure could be to study whether

our network estimates are related to commonalities in these various corporate policies.
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Figure 1: Sample coverage
This figure plots the coverage of our sample after the implementation of volatility estimation
filters. Panel A shows the coverage with respect to all stocks in CRSP-Compustat-Merged
database. Solid blue line displays the fraction of observations by count, whereas the dashed
red line displays the fraction of observations by market value. Panel B shows the coverage of 49
Fama-French industries in our sample. The figure displays the nine most populated industries
and shows how their firm count varies over time.

Panel A: All stock coverage

Panel B: Industry coverage
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Figure 2: Beer and liquor industry network
This figure plots the network for the beer and liquor industry as of June 2004 (Panel A) and June
2006 (Panel B). Larger node size corresponds to higher composite centrality and is standardized
across all years. Darker edge colors represent stronger connections based on network weights;
cutoff points are based on the 0th, 40th, 60th, 80th, 90th,100th average quantiles across all years.

(a) 2004

(b) 2006
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Figure 3: Strategy performance
This figure plots the performance of a $1 investment in alternative winner-minus-loser momentum strategies. The sample is
monthly and spans the period July 1928-December 2020.
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Figure 4: Placebo momentum performance
This figure compares the performance of peripheral peer momentum (PPM) strategy with that of a placebo momentum using
the distributions of three statistics. The first statistic is the average return over the full sample July 1928-December 2020. The
second and third statistics are the intercept terms (alphas) from simple spanning regressions of one winner-minus-loser portfolio
on the other. We compute these three statistics (as well as their corresponding t-statistics) for a given placebo momentum draw,
repeat the simulation 1000 times, and report the distributions of all statistics.
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Table 1: Network Estimation: Example Industry Network
This table reports the variance decomposition matrix (i.e., network matrix) for the beer and liquor industry as of June 2006.
The names in the rows and columns correspond to firms’ tickers, and the off-diagonal values in the matrix are interpreted as
the importance of pairwise directional connections (i.e., network weights). For completeness, we also report diagonal values
although they are of no interest for pairwise connections analysis and can be ignored. Each row is standardized to sum to 1. By
construction all elements are non-zero, and zeros displayed in the table are a result of rounding.

Variance decomposition for June, 2006
COKE MGPI BUD TAP STZ WVVI BREW SAM PMID

COKE 0.89 0.02 0.03 0.02 0.01 0.00 0.00 0.01 0.01
MGPI 0.01 0.91 0.01 0.04 0.01 0.00 0.00 0.01 0.00
BUD 0.00 0.00 0.93 0.04 0.00 0.00 0.00 0.01 0.02
TAP 0.01 0.00 0.19 0.79 0.00 0.00 0.00 0.00 0.00
STZ 0.02 0.01 0.00 0.00 0.95 0.00 0.00 0.00 0.00
WVVI 0.00 0.00 0.01 0.00 0.00 0.98 0.00 0.00 0.00
BREW 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00
SAM 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.96 0.00
PMID 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.95
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Table 2: Network Estimation: Example Industry Centrality
This table reports closeness, eigenvector, and total degree centrality as well as the composite centrality measure for the beer and
liquor industry corresponding to the network matrix estimated as of June 2006. Firms are sorted from higher to lower centrality
based on the composite measure.

Centrality estimates for June, 2006
Firm Total degree Closeness Eigenvector Composite
Anheuser-Busch Companies 0.25 0.08 0.44 0.34
Molson Coors Brewing Company 0.25 0.12 0.21 0.22
Coca-Cola Bottling Company 0.17 0.04 0.10 0.11
Pyramid Breweries 0.07 0.14 0.11 0.10
MGP Ingredients 0.09 0.13 0.03 0.06
Boston Beer 0.06 0.11 0.06 0.06
Constellation Brands 0.06 0.13 0.03 0.05
Willamette Valley Vineyards 0.03 0.16 0.01 0.03
Craft Brew Alliance 0.02 0.10 0.01 0.02
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Table 3: Network Estimation: Bottom and Top Composite Centrality Range Industries
This table reports the bottom and top industries based on composite centrality measure ranges (maximum minus minimum)
across three years (1930, 1970, and 2010).

1930 1970 2010
Panel A: Lowest composite centrality ranges
Steel Works Etc 0.10 Utilities 0.04 Banking 0.02

Automobiles and Trucks 0.11 Petroleum and Natural Gas 0.05 Petroleum and Natural Gas 0.02

Petroleum and Natural Gas 0.16 Electronic Equipment 0.05 Business Services 0.02

Food Products 0.18 Construction Materials 0.06 Electronic Equipment 0.02

Transportation 0.18 Machinery 0.06 Computer Software 0.03

Panel B: Highest composite centrality ranges
Utilities 0.23 Restaurants, Hotels, Motels 0.27 Precious Metals 0.19

Chemicals 0.36 Shipbuilding and Railroad Equipment 0.28 Agriculture 0.22

Construction Materials 0.40 Fabricated Products 0.29 Defense 0.23

Entertainment 0.40 Candy and Soda 0.33 Beer and Liquor 0.25

Electrical Equipment 0.81 Beer and Liquor 0.42 Textiles 0.25
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Table 4: Network Centrality: Composite Centrality Determinants
This table reports Fama-MacBeth regressions of composite centrality measure on standard cen-
trality measures and important firm characteristics. Standard centrality measures are closeness,
total degree and eigenvector centrality. Firm characteristics are firm size (log(ME)), the loga-
rithm of book-to-market ratio (log(BM)), the component of market share that is orthogonal to
firm size (MSHARE ORT), investment in physical and R&D capital (PRINV), operating lever-
age (OLEV), and past one-year return (R). Newey-West t-statistics are reported in brackets.

(1) (2) (3) (4)
const 0.01 -0.00 0.00 1.06

[6.29] [-2.76] [2.14] [2.60]
Closeness 0.62

[40.66]
Total degree 1.08

[46.35]
Eigenvector 0.93

[35.52]
log(ME) 0.38

[9.70]
log(BM) -0.31

[-2.38]
MSHARE_ORT 36.63

[20.43]
PRINV -0.82

[-4.14]
OLEV -0.45

[-8.64]
R 0.13

[2.00]
adj. R2 (%) 25.47 87.09 92.73 28.21
Avg. N 1,822 1,822 1,822 1,521
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Table 5: Portfolio Performance
This table reports average excess returns and alphas of simple and peripheral peer momentum
portfolios. At the end of each month, we sort stocks into five portfolios based on their industry
peers’ past month average returns weighted by the peers’ influence in the industry. Simple peer
momentum strategy uses all peers’ influence, whereas "peripheral peer momentum" strategy
uses only peripheral stocks’ influence as weights for the signal construction. All portfolios are
constructed using NYSE breaks. For each of the five portfolios, and for a portfolio long stocks
with high peer momentum signal and short stocks with low peer momentum signal, the table
reports average value-weighted returns in excess of the risk-free rate and alphas with respect to
the CAPM, Fama and French (1993) three-factor model, Fama and French (1993) three-factor
model augmented with the Carhart (1997) momentum factor, and the Fama and French (2015)
five-factor model. Panel A (B) reports the statistics of simple (peripheral) peer momentum
portfolios. T-statistics are in brackets. The sample period is 07/1928 to 07/2020 except for
Fama and French (2015) five-factor model whose sample is available only after July 1963.

Panel A: Excess returns and alphas on simple peer momentum-sorted portfolios
(L) (2) (3) (4) (H) (H-L)

re 0.27 0.51 0.72 0.89 1.00 0.74
[1.39] [2.90] [4.17] [5.03] [5.21] [5.69]

αCAPM -0.45 -0.17 0.06 0.21 0.29 0.74
[-5.92] [-2.92] [1.00] [3.61] [3.62] [5.65]

αFF3 -0.45 -0.17 0.04 0.18 0.27 0.72
[-5.83] [-3.06] [0.65] [3.37] [3.45] [5.51]

αFF3+UMD -0.34 -0.17 0.08 0.17 0.25 0.59
[-4.42] [-2.86] [1.37] [3.11] [3.15] [4.48]

αFF5 -0.39 -0.25 0.10 0.11 0.24 0.63
[-4.35] [-4.20] [1.81] [2.09] [3.00] [4.15]

Panel B: Excess returns and alphas on peripheral peer momentum-sorted portfolios
re 0.23 0.61 0.70 0.82 1.04 0.80

[1.23] [3.46] [4.06] [4.66] [5.41] [6.25]
αCAPM -0.48 -0.07 0.04 0.14 0.32 0.80

[-6.33] [-1.26] [0.63] [2.47] [4.10] [6.19]
αFF3 -0.47 -0.08 0.02 0.12 0.30 0.78

[-6.27] [-1.43] [0.36] [2.25] [3.90] [6.02]
αFF3+UMD -0.38 -0.06 0.04 0.13 0.28 0.66

[-4.94] [-1.08] [0.71] [2.41] [3.50] [5.00]
αFF5 -0.43 -0.11 0.02 0.09 0.26 0.69

[-4.85] [-1.79] [0.39] [1.52] [3.19] [4.54]
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Table 6: Fama-MacBeth Regressions
The table documents results from Fama-MacBeth regressions of the form rtj = β′xt−1,j + εtj .
The characteristics xt−1,j include peripheral peer momentum (rPeer1,0 ), classic momentum (r12,1),
industry momentum rInd1,0 , the log of market capitalization (log(ME)), the log of the book-to-
market ratio (log(BM)), gross profitability (GP/A), investment (I/A), and short-term reversals
(r1,0). Peripheral peer momentum strategy uses peripheral stocks’ influence in the industry
as weights for the signal construction, whereas industry momentum uses the market values of
all stocks in the industry as weights. GP/A follows Novy-Marx (2013). I/A follows Cooper,
Gulen, and Schill (2008). Independent variables are winsorized at the 1% level. T-statistics are
in brackets. Sample period is 07/1963 to 12/2020.

Regressions of the form rtj = β′xt−1,j + εtj
Coef. (1) (2) (3) (4) (5)
rPeer1,0 9.10 8.67 5.88 5.44

[8.67] [9.17] [6.25] [7.37]
r12,1 0.81 0.60

[4.15] [3.48]
rInd1,0 6.62 6.65

[5.86] [6.74]
log(ME) -0.08 -0.05

[-2.07] [-1.54]
log(B/M) 0.22 0.22

[3.96] [3.72]
GP/A 0.54 0.55

[4.24] [4.25]
Investment -0.69 -0.53

[-8.98] [-5.26]
r1,0 -5.54 -5.20

[-14.18] [-13.62]
R2 (%) 0.93 2.55 1.31 3.36 6.25
n 690 690 690 690 690
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Table 7: Conditional sort on industry momentum and peripheral peer momentum
This table presents results for conditional double sorts on industry momentum and peer momentum. In
each month, firms are sorted first into quintiles based on industry momentum, then on peer momentum.
Then, they are grouped into twenty-five portfolios based on the intersection of the two sorts. Panel A
presents the average returns to the 25 portfolios, panel B documents the average number of firms and
the average firm size for each portfolio. Time period is 07/1928 to 12/2020.

Panel A: Peer momentum conditional on industry momentum

Peer Momentum Quintiles Peer Momentum Strategies

(L) (2) (3) (4) (H) re αF F 4 βMKT βSMB βHML βUMD

In
du

st
ry

M
om

en
tu

m
qu

in
til

es

(L) -0.04 0.17 0.27 0.25 0.70 0.74 0.66 0.03 0.08 0.09 0.02
[4.28] [3.71] [0.76] [1.36] [1.62] [0.48]

(2) 0.41 0.52 0.51 0.75 0.53 0.12 0.05 0.03 -0.15 0.21 0.01
[0.80] [0.35] [1.12] [-3.06] [4.53] [0.21]

(3) 0.60 0.60 0.76 0.64 0.71 0.11 0.13 -0.02 -0.15 0.01 0.03
[0.70] [0.80] [-0.55] [-2.82] [0.16] [0.78]

(4) 0.81 0.90 0.87 1.01 1.06 0.25 0.24 -0.08 0.17 -0.13 0.12
[1.61] [1.50] [-2.53] [3.37] [-2.71] [3.12]

(H) 0.94 0.96 1.02 0.99 1.12 0.18 0.16 -0.07 -0.00 0.07 0.07
[1.16] [1.00] [-2.26] [-0.01] [1.47] [1.87]

All 0.55 0.57 0.67 0.76 0.84 0.30 0.29 -0.03 -0.00 0.08 0.01
[3.32] [3.09] [-1.66] [-0.14] [2.68] [0.58]

Panel B: Industry momentum conditional on peer momentum

Industry Momentum Quintiles Industry Momentum Strategies

(L) (2) (3) (4) (H) re αF F 4 βMKT βSMB βHML βUMD

Pe
er

M
om

en
tu

m
qu

in
til

es

(L) 0.35 0.40 0.29 0.41 0.45 0.11 0.20 -0.01 -0.22 -0.16 0.02
[0.56] [1.00] [-0.29] [-3.50] [-2.61] [0.53]

(2) 0.55 0.43 0.52 0.58 0.89 0.34 0.39 -0.12 -0.25 -0.04 0.14
[1.76] [2.06] [-3.20] [-4.14] [-0.65] [3.08]

(3) 0.76 0.62 0.68 0.79 0.87 0.12 0.17 -0.11 -0.16 -0.06 0.12
[0.71] [1.00] [-3.21] [-2.90] [-1.09] [2.91]

(4) 0.61 0.66 1.00 0.93 0.85 0.24 0.28 -0.09 -0.18 0.03 0.06
[1.32] [1.54] [-2.42] [-3.05] [0.54] [1.49]

(H) 0.68 1.13 1.03 0.95 1.00 0.32 0.24 0.00 -0.06 0.07 0.11
[1.68] [1.23] [0.00] [-0.94] [1.13] [2.30]

All 0.55 0.57 0.61 0.76 0.79 0.23 0.22 -0.06 -0.10 0.03 0.10
[2.06] [1.87] [-2.44] [-2.68] [0.82] [3.86]
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Appendix

Table A.1: Network Estimation: Descriptive Statistics
This table reports summary statistics of composite centrality measure for each Fama-French
industry. At the end of each network estimation period, we estimate the composite centrality
measures of all firms in a given industry and calculate its cross-sectional mean, standard devi-
ation, 25th and 75th percentiles. We repeat these calculations for each industry and each year
from June 1928 to June 2020. The table reports the time series averages of these summary
statistics.

Ind. µ σ p25 p75 Ind. µ σ p25 p75
Agric 0.16 0.09 0.08 0.23 Guns 0.16 0.1 0.08 0.25
Food 0.05 0.04 0.02 0.07 Gold 0.15 0.07 0.09 0.21
Soda 0.13 0.11 0.05 0.2 Mines 0.12 0.09 0.05 0.18
Beer 0.15 0.12 0.06 0.24 Coal 0.17 0.11 0.08 0.26
Smoke 0.17 0.12 0.07 0.27 Oil 0.04 0.03 0.01 0.05
Toys 0.09 0.07 0.03 0.13 Util 0.04 0.04 0.02 0.06
Fun 0.1 0.08 0.04 0.15 Telcm 0.06 0.05 0.02 0.09
Books 0.06 0.05 0.02 0.08 PerSv 0.08 0.06 0.03 0.11
Hshld 0.06 0.05 0.02 0.1 BusSv 0.03 0.03 0.01 0.04
Clths 0.07 0.07 0.02 0.12 Hardw 0.05 0.04 0.02 0.08
Hlth 0.06 0.04 0.03 0.08 Softw 0.02 0.02 0.01 0.03
MedEq 0.06 0.05 0.02 0.09 Chips 0.02 0.02 0.01 0.03
Drugs 0.05 0.04 0.02 0.08 LabEq 0.06 0.05 0.02 0.08
Chems 0.05 0.04 0.02 0.07 Paper 0.05 0.04 0.02 0.08
Rubbr 0.1 0.07 0.04 0.14 Boxes 0.1 0.08 0.04 0.15
Txtls 0.1 0.08 0.04 0.15 Trans 0.03 0.03 0.01 0.05
BldMt 0.04 0.04 0.01 0.06 Whlsl 0.05 0.04 0.02 0.07
Cnstr 0.07 0.06 0.03 0.1 Rtail 0.04 0.03 0.01 0.05
Steel 0.04 0.03 0.01 0.06 Meals 0.06 0.05 0.02 0.09
FabPr 0.15 0.11 0.07 0.23 Banks 0.05 0.04 0.01 0.07
Mach 0.04 0.03 0.01 0.06 Insur 0.04 0.03 0.01 0.05
ElcEq 0.07 0.06 0.02 0.1 RlEst 0.12 0.09 0.06 0.17
Autos 0.05 0.04 0.02 0.07 Fin 0.03 0.02 0.01 0.04
Aero 0.09 0.07 0.04 0.13 Other 0.1 0.08 0.03 0.14
Ships 0.16 0.11 0.07 0.24
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Table A.2: Portfolio weights used to construct peripheral peer momentum signals: An example
This table explains the construction of peripheral peer momentum strategy using the beer & liquor industry example from Table
1. For each firm in each industry, we track the past performance of its peers except those whose composite centrality measure is
at the 90th percentile of the industry or above and form a peer impact portfolio. Specifically, we set the own impacts reported as
diagonal elements in the network matrix as well as the impacts of the most central firm(s) in the industry (e.g. Anheuser Busch
[ticker: Bud] in beer & liquor industry) to zero and rescale the other elements such that each row adds up to one. Multiplying
the resulting portfolio weights by past one-month returns yields peripheral peer momentum signals. We implement these signal
construction techniques to each industry at the end of June each year. Once we collect all signals, we sort stocks on them, form
our peripheral peer momentum portfolios, and rebalance them monthly.

Portfolio weights used to construct peripheral peer momentum signals in beer & liquor industry from June 2006 to May 2007
COKE MGPI BUD TAP STZ WVVI BREW SAM PMID

COKE 0.00 0.22 0.00 0.28 0.17 0.03 0.02 0.16 0.12
MGPI 0.14 0.00 0.00 0.52 0.08 0.01 0.03 0.18 0.04
BUD 0.05 0.02 0.00 0.50 0.03 0.01 0.02 0.10 0.26
TAP 0.52 0.06 0.00 0.00 0.11 0.01 0.01 0.08 0.21
STZ 0.50 0.20 0.00 0.08 0.00 0.08 0.02 0.06 0.06
WVVI 0.24 0.06 0.00 0.13 0.27 0.00 0.25 0.03 0.01
BREW 0.20 0.23 0.00 0.01 0.02 0.36 0.00 0.05 0.14
SAM 0.88 0.01 0.00 0.01 0.05 0.01 0.02 0.00 0.02
PMID 0.72 0.01 0.00 0.20 0.01 0.00 0.03 0.03 0.00
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Table A.3: Loadings on Fama and French (2015) five-factor model
At the end of each month, we sort stocks into five portfolios based on their industry peers’ past
month average returns weighted by the peers’ influence in the industry. Simple peer momen-
tum strategy uses all peers’ influence as weights for signal construction, whereas "peripheral
peer momentum" strategy uses only peripheral stocks’ influence as weights. All portfolios are
constructed using NYSE breaks. For each of the five portfolios, and for a portfolio long stocks
with high peer momentum signal and short stocks with low peer momentum signal, the table
reports the loadings on Fama and French (2015) five-factors. Panel A (B) reports the statis-
tics of simple (peripheral) peer momentum portfolios. T-statistics are in brackets. The sample
period is July1963 to December 2020.

Panel A: Simple peer momentum-sorted portfolios
(L) (2) (3) (4) (H) (H-L)

βMKT 1.09 1.04 0.94 1.00 0.98 -0.11
[49.99] [71.73] [68.06] [74.31] [49.81] [-2.94]

βSMB -0.03 -0.04 -0.05 -0.05 -0.09 -0.06
[-0.88] [-1.75] [-2.57] [-2.50] [-3.04] [-1.10]

βHML 0.04 0.10 0.09 0.09 -0.03 -0.07
[0.91] [3.59] [3.37] [3.46] [-0.83] [-0.98]

βRMW 0.07 0.19 0.18 0.14 0.03 -0.04
[1.60] [6.45] [6.51] [5.42] [0.80] [-0.51]

βCMA -0.02 0.02 0.01 0.14 0.07 0.09
[-0.36] [0.37] [0.37] [3.53] [1.16] [0.82]

Panel B: Peripheral peer momentum-sorted portfolios
(L) (2) (3) (4) (H) (H-L)

βMKT 1.06 1.06 0.97 0.99 0.97 -0.09
[49.74] [73.54] [70.24] [72.91] [48.47] [-2.45]

βSMB -0.03 -0.09 -0.02 -0.10 -0.06 -0.03
[-0.92] [-4.43] [-1.06] [-5.11] [-2.08] [-0.60]

βHML 0.03 0.13 0.12 0.06 -0.03 -0.06
[0.81] [4.80] [4.53] [2.48] [-0.72] [-0.86]

βRMW 0.10 0.15 0.19 0.12 0.04 -0.06
[2.45] [5.32] [6.98] [4.51] [1.00] [-0.88]

βCMA -0.02 -0.02 0.01 0.10 0.08 0.10
[-0.34] [-0.39] [0.19] [2.62] [1.32] [0.92]
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Table A.4: Conditional sort on classic momentum and peer momentum
This table presents results for conditional double sorts on classic momentum and peer momentum. In
each month, firms are sorted first into quintiles based on classic momentum, then on peer momentum.
Then, they are grouped into twenty-five portfolios based on the intersection of the two sorts. Panel A
presents the average returns to the 25 portfolios, panel B documents the average number of firms and
the average firm size for each portfolio. Time period is 07/1928 to 12/2020.

Panel A: portfolio average returns and time-series regression results

Peer Momentum Quintiles Peer Momentum Strategies

(L) (2) (3) (4) (H) re αF F 4 βMKT βSMB βHML βUMD

M
om

en
tu

m
qu

in
til

es

(L) 0.12 0.54 0.18 0.39 0.67 0.55 0.41 -0.15 0.32 0.18 0.18
[2.41] [1.76] [-3.25] [4.23] [2.56] [3.30]

(2) 0.11 0.61 0.64 0.83 0.86 0.75 0.64 -0.05 0.04 0.15 0.13
[4.72] [3.90] [-1.39] [0.68] [3.11] [3.43]

(3) 0.16 0.49 0.69 0.90 0.89 0.74 0.72 -0.04 -0.06 0.13 0.02
[5.06] [4.80] [-1.38] [-1.29] [2.77] [0.58]

(4) 0.36 0.71 0.77 0.86 1.21 0.85 0.72 0.05 -0.07 0.16 0.09
[5.74] [4.73] [1.62] [-1.49] [3.49] [2.58]

(H) 0.79 0.93 1.13 1.05 1.31 0.53 0.46 -0.07 -0.05 0.09 0.15
[3.09] [2.62] [-2.03] [-0.97] [1.69] [3.75]

Panel B: Portfolio average number of firms and market capitalization

Peer Momentum Quintiles Peer Momentum Quintiles

Average n Average market capitalization ($106)

(L) (2) (3) (4) (H) (L) (2) (3) (4) (H)

M
om

en
tu

m
qu

in
til

es (L) 54 53 52 52 55 836 765 756 760 795

(2) 45 44 44 44 44 1687 1559 1517 1620 1652

(3) 43 43 43 42 42 2029 2049 2093 2080 2122

(4) 43 42 42 42 43 2196 2141 2292 2219 2403

(H) 50 47 47 48 49 2019 1861 1988 2197 2383
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Table A.5: Spanning tests
The table shows the results of time series regressions of alternative winner-minus-loser momentum portfolios on each other and
Fama and French (2015) five-factors. The alternative momentum strategies are peripheral peer momentum, industry momentum
and classic momentum. The sample period is 07/1928 to 12/2020 except for regressions including Fama and French (2015)
five-factors whose sample is available only after July 1963.

Coef. (1) (2) (3) (4) (5) (6) (7) (8) (9)
Peer Momentum Industry Momentum Momentum

as a dependent variable as a dependent variable as a dependent variable
Intercept 0.80 0.25 0.08 0.77 0.15 0.24 0.71 0.63 0.66

[6.25] [2.84] [0.83] [5.69] [1.57] [2.08] [3.82] [3.33] [3.28]
Peer Mom. 0.78 0.85 0.09 0.30

[35.94] [28.48] [1.45] [3.94]
Ind. Mom. 0.69 0.64 0.01 0.04

[35.94] [28.48] [0.14] [0.53]
Mom. 0.02 0.07 0.00 0.01

[1.45] [3.94] [0.14] [0.53]
MKT -0.01 -0.02 -0.21

[-0.41] [-0.63] [-4.34]
SMB 0.02 -0.06 -0.02

[0.71] [-1.43] [-0.26]
HML 0.08 -0.09 -0.58

[1.64] [-1.59] [-6.30]
CMA -0.10 0.06 0.33

[-1.98] [1.16] [3.40]
RMW -0.08 0.15 0.36

[-1.15] [1.81] [2.53]
n 1110 1110 690 1110 1110 690 1110 1110 690
R̄2(%) 0 54 57 0 54 57 0 0 16
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Table A.6: Conditional sort on market equity and peer momentum
This table presents results for conditional double sorts on market equity and peer momentum. In each month, firms are sorted first into
quintiles based on size, then on peer momentum. Then, they are grouped into twenty-five portfolios based on the intersection of the two sorts.
Panel A presents the average returns to the 25 portfolios, panel B documents the average number of firms and the average firm size for each
portfolio. Time period is 07/1928 to 12/2020.

Panel A: portfolio average returns and time-series regression results

Peer Momentum Quintiles Peer Momentum Strategies

(L) (2) (3) (4) (H) re αF F 4 βMKT βSMB βHML βUMD

Si
ze

qu
in

til
es

(L) 0.82 1.16 0.98 1.25 1.64 0.83 0.94 -0.28 0.07 -0.03 0.11
[2.94] [3.28] [-4.86] [0.75] [-0.38] [1.58]

(2) 0.57 0.52 1.00 1.22 1.24 0.68 0.83 -0.12 -0.26 -0.14 0.05
[3.29] [3.96] [-2.88] [-3.85] [-2.19] [1.01]

(3) 0.48 0.88 1.01 1.24 1.04 0.56 0.58 -0.09 -0.05 0.02 0.07
[3.30] [3.29] [-2.49] [-0.93] [0.43] [1.80]

(4) 0.41 0.73 0.91 1.11 1.10 0.69 0.63 -0.02 -0.00 0.20 0.02
[4.86] [4.32] [-0.82] [-0.03] [4.43] [0.49]

(H) 0.26 0.53 0.68 0.78 1.01 0.75 0.63 0.00 -0.01 0.18 0.10
[5.77] [4.70] [0.11] [-0.21] [4.48] [3.11]

Panel B: Portfolio average number of firms and market capitalization

Peer Momentum Quintiles Peer Momentum Quintiles

Average n Average market capitalization ($106)

(L) (2) (3) (4) (H) (L) (2) (3) (4) (H)

Si
ze

qu
in

til
es

(L) 82 81 78 78 83 103 111 106 106 106

(2) 39 39 39 38 40 202 208 210 205 208

(3) 36 35 35 35 36 384 389 388 384 388

(4) 36 36 36 36 37 899 898 893 903 917

(H) 40 40 40 40 40 7160 6958 7032 7146 7717
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Table A.7: Robustness to strategy construction
At the end of each month, we construct one-way sorted peripheral peer momentum portfolios
and a zero-cost portfolio long stocks with high peer momentum signal and short stocks with low
peer momentum signal. Panel A reports results using equal-weighted portfolios, constructed
from a quintile sort with NYSE stock breakpoints. Panel B reports results using value-weighted
portfolios, constructed from a quintile sort with all stock breakpoints. Panel C reports results
using value-weighted portfolios, constructed from a decile sort with NYSE breakpoints. For all
of these portfolios, the table reports average returns in excess of the risk-free rate and alphas
with respect to the CAPM, Fama and French (1993) three-factor model, Fama and French
(1993) three-factor model augmented with the Carhart (1997) momentum factor, and the Fama
and French (2015) five-factor model. T-statistics are in brackets. The sample period is 07/1928
to 12/2020 except for Fama and French (2015) five-factor model whose sample is available
only after July 1963.

Panel A: Quintile sort, equal-weighted, NYSE breaks
(L) (2) (3) (4) (H) (H-L)

re 0.32 0.69 0.90 1.05 1.27 0.95
[1.41] [3.17] [4.26] [4.95] [5.65] [7.75]

αCAPM -0.53 -0.14 0.10 0.24 0.44 0.96
[-5.48] [-1.77] [1.25] [3.23] [4.65] [7.83]

αFF3 -0.59 -0.23 0.01 0.15 0.34 0.93
[-7.04] [-3.64] [0.13] [2.49] [4.29] [7.61]

αFF3+UMD -0.39 -0.09 0.12 0.27 0.43 0.83
[-4.79] [-1.46] [2.00] [4.66] [5.44] [6.62]

αFF5 -0.63 -0.22 0.06 0.18 0.46 1.09
[-6.21] [-3.34] [1.01] [3.18] [5.75] [7.57]

Panel B: Quintile sort, value-weighted, all stock breaks
re 0.23 0.60 0.72 0.80 1.02 0.80

[1.18] [3.41] [4.18] [4.52] [5.31] [6.08]
αCAPM -0.49 -0.08 0.05 0.12 0.31 0.80

[-6.37] [-1.44] [0.98] [2.06] [3.87] [6.03]
αFF3 -0.48 -0.09 0.04 0.10 0.29 0.77

[-6.25] [-1.55] [0.73] [1.86] [3.67] [5.84]
αFF3+UMD -0.38 -0.07 0.06 0.11 0.27 0.65

[-4.82] [-1.15] [1.03] [1.98] [3.39] [4.83]
αFF5 -0.42 -0.09 0.06 0.09 0.25 0.67

[-4.52] [-1.47] [1.09] [1.54] [2.96] [4.22]
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Table (Continued): Robustness to strategy construction

Panel C: Decile sort, value-weighted, NYSE breaks
(L) (2) (3) (4) (5) (6) (7) (8) (9) (H) (H-L)

re 0.18 0.31 0.55 0.66 0.60 0.76 0.88 0.80 1.03 1.05 0.87
[0.87] [1.64] [2.88] [3.74] [3.38] [4.22] [4.96] [4.19] [5.02] [5.29] [5.49]

αCAPM -0.54 -0.40 -0.16 -0.00 -0.06 0.08 0.21 0.09 0.29 0.34 0.88
[-5.45] [-5.00] [-2.04] [-0.07] [-0.74] [1.18] [3.04] [1.15] [3.01] [3.56] [5.49]

αFF3 -0.53 -0.41 -0.17 -0.02 -0.08 0.06 0.20 0.06 0.25 0.32 0.85
[-5.33] [-5.20] [-2.13] [-0.32] [-1.02] [0.88] [2.89] [0.73] [2.70] [3.37] [5.31]

αFF3+UMD -0.43 -0.32 -0.14 -0.00 -0.03 0.07 0.20 0.08 0.23 0.30 0.73
[-4.24] [-4.02] [-1.79] [-0.06] [-0.41] [1.01] [2.84] [1.05] [2.42] [3.13] [4.49]

αFF5 -0.56 -0.33 -0.17 -0.08 -0.00 0.06 0.17 0.03 0.22 0.27 0.83
[-4.85] [-3.75] [-2.13] [-1.14] [-0.02] [0.90] [2.59] [0.34] [2.59] [2.48] [4.33]
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Table A.8: Robustness to other anomalies: Double sorts
The table reports average excess returns for conditional peripheral peer momentum (PPM) strategies, constructed from double-sorts on each of
the twenty-three anomaly signals from Novy-Marx and Velikov (2016) and PPM. In each month, we sort all firms in the CRSP/COMPUSTAT
merged database into quintiles using the signal for one of the twenty-three anomalies. Then, within each quintile, we sort stocks into quintiles
depending on their PPM. Firms are grouped into five PPM portfolios by combining the firms across the characteristic quintiles. The table
reports value-weighted average excess returns for the five PPM portfolios and for a portfolio that is long stocks in the high PPM portfolio and
short stocks in the low PPM portfolio. T-statistics are in brackets.

Panel A: Excess returns on conditional PPM-sorted portfolios
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(L) 0.28 0.43 0.31 0.42 0.19 0.39 0.39 0.39 0.26 0.32 0.28 0.38 0.44 0.28 0.28 0.39 0.29 0.55 0.26 0.49 0.25 0.35 0.38
[1.47] [2.43] [1.62] [2.38] [0.94] [2.23] [2.12] [1.70] [1.36] [1.44] [1.27] [2.19] [2.50] [1.50] [1.50] [1.71] [1.29] [3.00] [1.38] [2.56] [1.38] [1.86] [2.14]

(2) 0.55 0.61 0.63 0.61 0.60 0.61 0.62 0.60 0.62 0.59 0.54 0.57 0.58 0.61 0.58 0.68 0.58 0.57 0.62 0.64 0.49 0.65 0.59
[3.14] [3.68] [3.59] [3.76] [3.23] [3.81] [3.91] [2.97] [3.50] [2.92] [2.66] [3.56] [3.64] [3.38] [3.30] [3.25] [2.88] [3.31] [3.50] [3.61] [2.85] [3.72] [3.52]

(3) 0.70 0.75 0.68 0.71 0.65 0.71 0.73 0.80 0.68 0.70 0.72 0.77 0.81 0.62 0.72 0.72 0.73 0.67 0.65 0.68 0.77 0.74 0.68
[4.16] [4.84] [3.92] [4.55] [3.58] [4.61] [4.61] [4.12] [3.92] [3.70] [3.77] [4.87] [5.22] [3.65] [4.18] [3.70] [3.94] [3.88] [3.85] [3.89] [4.42] [4.32] [3.95]

(4) 0.79 0.77 0.80 0.70 0.62 0.70 0.73 0.68 0.85 0.72 0.66 0.75 0.72 0.84 0.82 0.75 0.70 0.76 0.82 0.76 0.80 0.84 0.81
[4.49] [5.00] [4.50] [4.50] [3.53] [4.57] [4.73] [3.53] [4.58] [3.77] [3.47] [4.84] [4.70] [4.81] [4.66] [3.80] [3.67] [4.26] [4.65] [4.41] [4.47] [4.65] [4.73]

(H) 1.02 0.91 1.00 0.91 0.78 0.91 0.89 0.84 0.99 0.80 0.87 0.89 0.92 1.01 1.01 0.84 0.84 0.84 1.03 0.87 1.06 0.99 1.04
[5.49] [5.64] [5.47] [5.68] [4.17] [5.64] [5.45] [4.16] [5.30] [3.96] [4.28] [5.55] [5.65] [5.40] [5.39] [4.05] [4.16] [4.78] [5.41] [4.74] [5.76] [5.43] [5.85]

(L-H) 0.74 0.48 0.69 0.49 0.59 0.51 0.51 0.46 0.73 0.49 0.58 0.50 0.48 0.73 0.72 0.44 0.53 0.30 0.77 0.38 0.81 0.64 0.66
[5.90] [3.72] [5.92] [3.78] [3.68] [4.03] [3.79] [2.61] [6.04] [3.06] [3.62] [3.99] [3.81] [6.18] [6.05] [2.63] [3.23] [3.32] [5.98] [3.28] [7.30] [5.47] [5.73]
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Table A.9: Subsample Analysis
At the end of each month, we sort stocks into five peripheral peer momentum (PPM) portfolios
using NYSE breaks. For each of the five portfolios, and for a portfolio long stocks with high
PPM and short stocks with low PPM, we calculate average value-weighted returns in excess
of the risk-free rate and alphas with respect to the CAPM, Fama and French (1993) three-
factor model, Fama and French (1993) three-factor model augmented with the Carhart (1997)
momentum factor. Panel A reports the results for the early subsample (1928-1963), and Panel
B reports the results for the late subsample (1963-2020). T-statistics are in brackets.

Panel A: Excess returns and alphas on peripheral peer momentum-sorted portfolios: 1928-1963
(L) (2) (3) (4) (H) (H-L)

re 0.29 0.72 0.79 1.03 1.38 1.10
[0.74] [2.02] [2.17] [2.73] [3.37] [4.57]

αCAPM -0.61 -0.13 -0.08 0.13 0.43 1.04
[-4.27] [-1.15] [-0.70] [1.16] [2.79] [4.30]

αFF3 -0.59 -0.13 -0.08 0.12 0.42 1.01
[-4.20] [-1.14] [-0.69] [1.13] [2.74] [4.24]

αFF3+UMD -0.52 -0.11 -0.05 0.18 0.48 1.00
[-3.59] [-0.94] [-0.48] [1.56] [3.05] [4.07]

Panel B: Excess returns and alphas on peripheral peer momentum-sorted portfolios: 1963-2020
re 0.20 0.54 0.65 0.70 0.82 0.62

[1.02] [2.97] [3.85] [4.14] [4.59] [4.28]
αCAPM -0.39 -0.03 0.12 0.17 0.29 0.68

[-4.63] [-0.53] [2.05] [2.91] [3.58] [4.65]
αFF3 -0.40 -0.06 0.09 0.15 0.29 0.69

[-4.62] [-0.98] [1.55] [2.72] [3.64] [4.67]
αFF3+UMD -0.29 -0.04 0.11 0.14 0.22 0.50

[-3.38] [-0.65] [1.86] [2.47] [2.69] [3.44]
αFF5 -0.43 -0.11 0.02 0.09 0.26 0.69

[-4.85] [-1.79] [0.39] [1.52] [3.19] [4.54]
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