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Abstract

We develop a real options investment model in which managers learn about the
unobservable characteristics of new production technologies from their most recently
installed production capacity and their firm’s stock price. Critically, the model predicts
that managers rely more on the stock price the longer ago the firm last installed
capacity. In accordance, the corporate investment-to-stock price sensitivity rises
with past capacity overhang, a proxy for the time since a firm last acquired capacity.
The results hold under various investment, employment, and Tobin’s () proxies and
controlling for the private information in stock prices and firm financial constraints.
Notably, the disinvestment-to-stock price sensitivity falls with capacity overhang,
suggesting managers also learn about liquidation values from stock prices. We shed
light on the nature of information managers extract from markets by providing causal
evidence that the managerial learning dynamics we uncover are more pronounced for
firms exposed to greater technological progress.
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1 Introduction

Over the last few decades, a large literature has established that corporate investment is
positively correlated with stock prices (see, e.g., Fama (1981), Barro (1990), Morck, Shleifer,
and Vishny (1990), and Blanchard, Rhee, and Summers (1993)). Recent studies propose
an explanation for this empirical relation founded on the idea that managers rely on their
firms’ stock market valuation to aid them in their real investment decisions. In a seminal
paper, Chen, Goldstein, and Jiang (2007) show that the corporate investment-to-stock price
sensitivity rises with the amount of private investor information in stock prices. Building on
that work, Bakke and Whited (2010), Foucault and Frésard (2012), and Edmans, Jayaraman,
and Schneemeier (2017), among others, provide support for the notion that the positive
investment—stock price relation is, at least in part, driven by managerial learning. Despite
the strong evidence that managers use stock prices to guide their investment decisions, the
literature is notably silent on the nature of information managers learn from markets.

In this paper, we argue that managers use stock prices as an important source of infor-
mation about the characteristics of new assets which they contemplate investing in. They
do so since, in a world with unobservable technological progress, a firm’s existing assets offer
managers limited information about those characteristics, especially if the installed assets
were acquired a long time ago. Conversely, stock investors continuously monitor a large set
of similar firms, some of which may already be operating modern assets embodying the latest
technological advances. As such, it is plausible that investors have incremental information
about the characteristics of those assets, which, in turn, is reflected in their valuation of the
firm. Accordingly, when market valuations reveal that information, managers are able to rely
on stock prices in guiding their investment decisions. The information embedded in stock
prices is particularly valuable when the firm’s installed assets give managers a poor signal
on latest technological advances due to the assets’ age and likely obsolescence.

We begin our investigation by developing a real options investment model that formalizes

this intuition. The firm in the model owns several production units (“factories”) that enable it



to produce a homogeneous output good and sell that at a stochastic price. The firm further
owns a “growth option” allowing it to acquire a modern factory. Due to technological progress,
the cost at which the firm can use modern factories to produce output evolves randomly with
negative drift. Critically, the manager may only directly observe that cost upon acquiring
a modern factory. The manager, however, forms expectations about the unobserved cost of
modern capacity using information obtained from two sources. First, the manager can use
the cost at which the firm’s most recently installed factory produces output to infer the cost
at which the modern factory would do so. Second, the manager can back out stock investors’
estimate of the modern factory’s production cost from the firm’s stock price.

We next show that the firm optimally invests in the modern factory when the manager’s
best estimate for its value is sufficiently high relative to the investment outlay. Naturally, the
manager’s best estimate is a function of both the production cost of its most recently installed
factory and stock investors’ cost estimate, as reflected in the firm’s stock price. The crux of
our model is that the longer ago the firm last acquired a factory, the more it relies on the stock
market’s cost estimate—and the less it relies on the cost of its most recently installed factory—
to learn about the modern factory’s value, making the firm’s investments more sensitive to the
stock price. The learning-based dynamic that the firm’s investment-to-stock price sensitivity
rises with the time since it last acquired capacity intuitively emerges from our model and
results from the logic that while the stock market’s cost estimate may be poor, we assume
that its predictive ability remains stable over time.! In contrast, the accuracy with which
the cost of modern capacity can be predicted using the costs of installed factories naturally
declines with the length of time since the firm acquired its most recent production capacity.

We next take several testable predictions of our theoretical framework to the data. Our em-
pirical analysis is designed to test the model’s central insight that a firm’s investment-to-stock
price sensitivity increases with the time since it last acquired capacity. Finding an empirical

counterpart to the latter theoretical construct is challenging since the timing of firms’ invest-

IThis assumption is plausible, reflecting the notion that stock investors form their estimate from a large
set of similar firms they hold in their portfolios, some of which may already be operating modern factories.



ments into new capacity is not observable via conventional data sources (e.g., Compustat).? A
key innovation of our empirical approach is that we overcome this challenge by using past “ca-
pacity overhang,” defined as the extent to which a firm’s installed capacity exceeds its optimal
capacity, as a proxy for the length of time since a firm last acquired capacity. As we explain
later, capacity overhang serves as an effective proxy for the time since a firm last invested in
capacity as it reflects the extent to which a firm’s current demand deviates from the demand
threshold at which the firm would optimally invest into additional capacity. As a result, a firm
with a persistently high capacity overhang over some recent past period will optimally not have
invested into capacity over that period, implying that its managers will have little hands-on
experience with recent advances in production technology. We create a time-varying measure
of firms’ capacity overhang using the stochastic frontier model estimation technique proposed
in Aretz and Pope (2018). We validate the measure using firm establishment-level data, show-
ing that it is positively correlated with the time since a firm last opened an establishment—an
observable and discrete decision to invest in new capacity. Using this measure, we estimate
firms’ conditional investment-to-stock price sensitivity in a panel regression specification
exploiting within-firm variation in market valuation and capacity overhang.

Our baseline results provide strong support for the proposed model intuition. Using the
sum of capital, R&D, advertising, and acquisition expenditures scaled by lagged assets as a
measure of firm investment, and regressing it on the market-to-book ratio (“Tobin’s @”), we
find that while bottom capacity overhang tercile firms have a sensitivity of 1.62, the sensitivity
of top tercile firms is 3.07. The difference in sensitivities is highly statistically significant and
economically meaningful. A one-standard-deviation increase in Tobin’s () is associated with a
2.15 percentage point increase in the investment ratio (13.6% of the sample mean investment
ratio of 15.8%) for firms in the bottom capacity overhang tercile, while the same increase is as-
sociated with a 4.09 points increase (25.9% of the sample mean) for firms in the top tercile. Our

results are robust to the use of a wide range of alternative investment and market valuation

2The typically-used proxy for a firm’s investment, reported capital expenditures, intermingles spending
on new assets with outlays for maintenance, repairs, and improvements to installed assets.



metrics. Notably, we are the first to show that firms’ investment in human capital—measured
through employment growth at the establishments they operate—is sensitive to stock prices
when capacity overhang is high. Taken together, the results suggest that the rate at which man-
agers are guided by stock prices in making their investment decisions is an increasing function
of capacity overhang, reflecting the time since the firm last invested into new capacity.

We supplement our base analyses with a host of tests aimed at ruling out that our findings
are driven by other omitted yet well-known determinants of the investment-to-stock price
sensitivity. We show that our main findings survive the inclusion of controls that proxy for
the extent to which stock prices contain private information (as in Chen, Goldstein, and Jiang
(2007)). We further explore the possibility that managers may have access to alternative
sources of information on the characteristics of new production technologies, specifically
through industry trade and professional associations. Notably, in tests conditioning on the
presence of such associations, we show that the learning dynamics predicted by our model
are more pronounced when managers lack access to these alternative information channels.

We next consider whether variation in our capacity overhang measure may simply be
capturing changes in firms’ financial constraints. On this front, we show that our results hold
even after accounting for changes in several metrics of a firm’s ability to raise funding including
equity and debt issuances, firm size and age (see Hadlock and Pierce (2010)), the Whited
and Wu (2006) index, textual mentions of financial constraints in regulatory disclosures (see
Hoberg and Maksimovic (2015)), and firm payouts (see Almeida and Campello (2007)). That
our main results continue to obtain is reassuring in light of prior work showing that the
investment-to-stock price sensitivity may also capture an easing of firm financial constraints
(see, e.g., Baker, Stein, and Wurgler (2003)). We further show that managerial learning among
high-capacity overhang firms is particularly pronounced for the subset of unconstrained firms,
consistent with the idea that such firms have a greater ability to respond to market signals

to invest than firms lacking access to capital. New to the literature, we document that the
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Figure 1. Investment and Disinvestment Sensitives to the Stock Price Across Capacity Over-
hang Deciles. This figure plots investment (Panel A) and disinvestment (Panel B) scaled by one-year lagged
assets against the market-to-book ratio (“Tobin’s Q") plus the predicted linear relations between the variables
for firms in the first (blue) and last (red) capacity overhang decile. Both the investment and disinvestment
variables are orthogonalized with respect to size and cash flow.
disinvestment-to-stock price sensitivity declines with capacity overhang, suggesting that firms
which have not recently disinvested learn about asset liquidation values from the stock market.

Figure 1 offers a graphical illustration of our baseline findings. Panel A points to a notable
difference in the investment-to-stock price sensitivities between firms which have recently
installed capacity (“Capacity Overhang Decile 17) and those which have not (“Capacity
Overhang Decile 10”). To wit, while high capacity overhang firms with high market valuations
exhibit disproportionately higher investment rates as compared to otherwise identical firms
with low market valuations, that same relation is remarkably muted for firms with more
recently installed—and thus more modern—assets. Panel B illustrates that firms with more
recently installed capacity respond more pronouncedly to market valuations in terms of their
disinvestment relative to firms with more obsolete capacity. The figure confirms our model
logic and motivates our empirical analysis of the underlying economic mechanism.

To further empirically validate our theoretical framework, our next set of tests aim to
establish that managerial learning about technological progress is the channel through which

capacity overhang influences the investment-to-stock price sensitivity. In this analysis, we

allow the effect of capacity overhang to be conditional on the rate of technological progress



to which either a firm or industry is exposed. Relying on the idea that highly-cited patents
embody economically-important innovations (see, e.g., Hall, Jaffe, and Trajtenberg (2005)
and Kogan et al. (2017)), we use the number of citations of patents filed by firms in an
industry to capture inter-industry variation in technological progress. Alternatively, we use
a firm’s within-industry rank of the time since it last filed a patent to capture intra-industry
variation. To mitigate concerns that these measures may be endogenous to firm investment op-
portunities, we also use Bloom, Schankerman, and van Reenen’s (2013) instrument for a firm’s
exposure to technological progress by its peers. This instrument exploits plausibly-exogenous
variation in the R&D expenditures of peer firms within the same technology space as the
focal firm induced through changes in state and federal R&D tax credits. In line with our
theory, these conditioning tests establish that the managers of high capacity overhang firms
learn more investment-relevant information from stock prices relative to those of low capacity
overhang firms when they are more exposed to technological progress. These are precisely the
states in which our model would predict that stock prices are likely to be more informative
than managers’ own information gleaned from their firms’ existing operations. Our results
provide direct evidence that managers are likely to be learning about technology from stock
prices, with this learning driving the corporate investment-to-stock price sensitivity.

Our study contributes to a growing literature suggesting that managers incorporate
investors’ information embedded in stock prices into their investment decisions. In line with
that idea, Chen, Goldstein, and Jiang (2007) show that the corporate investment-to-stock
price sensitivity increases with the probability of informed trading (PIN) and price non-
synchronicity, proxies for the amount of private investor information in stock prices. Using a
methodology disentangling investment-relevant information in stock prices from noise, Bakke
and Whited (2010) offer supportive evidence. Relying on shocks to a firm’s investor base,
insider trading rules, disclosure rules, and price discreteness, Foucault and Frésard (2012),
Edmans, Jayaraman, and Schneemeier (2017), Jayaraman and Wu (2019), and Ye, Zheng,

and Zhu (2019) offer further supportive evidence. Studying merger and acquisition (M&A)



announcements, Luo (2005) finds that negative stock market reactions can push managers
toward canceling deals, also in line with the former evidence. Recent work by Goldstein,
Liu, and Yang (2021) provides survey evidence of managerial learning as a mechanism for
the investment-to-stock price sensitivity.®> We shed new light relative to those studies by
looking into the type of information managers glean from stock prices, providing a theoretical
framework and empirical evidence that managers learn about the operational characteristics
of modern capacity from stock prices. We show that this learning is a critical factor explaining
the observed sensitivity of corporate investment to stock prices.

We further contribute to the literature by linking studies on the investment-to-stock price
sensitivity with those on corporate innovation. A number of prior studies provide evidence
that stock markets promote innovation by enabling firms to access financing (see, e.g., Brown,
Fazzari, and Petersen (2009) and Acharya and Xu (2017)). Others suggest that exposure to
stock market pressures may also impede managers from investing in innovation (see, e.g., He
and Tian (2013) and Fang, Tian, and Tice (2014)). Our findings uncover a novel dimension
in which stock markets may influence innovation. Specifically, we show that stock markets
enable the dissemination of innovation as managers learn about technological progress from
market prices, which, in turn, incentivizes them to invest in modernizing their assets.

We finally add to the real options investment literature, as pioneered by Brennan and
Schwartz (1985), MacDonald and Siegel (1986), as well as Pindyck (1988), by parsimoniously
incorporating idiosyncratic technological progress in the cost at which capacity produces
output into that literature. Assuming that managers do not directly observe that cost, and
that the cost obeys a geometric Brownian motion (GBM) with negative drift, the value of
modern capacity in our model is a function of managers’ best estimate of that cost — and

thus of predictor variables conditioning the best estimate. Since the optimal investment rule

3A related literature suggests that managers do not only use their own stock prices in their investment
decisions but also those of their peers (see Foucault and Frésard (2014), Dessaint, Foucault, Frésard, and
Matray (2018), and Ozoguz, Rebello, and Wardlaw (2018), among others). Similarly, Bustamante and
Frésard (2020) show that firms’ investment responds directly to their peers’ investment decisions, while
Bernard, Blackburne, and Thornock (2020) show that firms’ acquisition of information through rival firms’
disclosures influences their subsequent investment decisions.



is still to acquire capacity as soon as its value estimate sufficiently exceeds the investment cost,
our model leads the predictor variables to be determinants of the firm’s optimal investment
policy, creating a channel for investment decisions to depend on stock prices.

Our paper proceeds as follows. Section 2 develops a real options model predicting that a
firm’s stock price is a more important determinant of its investment policy the longer ago
the firm last acquired capacity. Section 3 presents empirical evidence supporting our model,
showing that the corporate investment-to-stock price sensitivity rises with capacity overhang
under alternative proxy and control variables. It also reveals that the disinvestment-to-stock
price sensitivity drops with capacity overhang. Section 4 shows that our main results on the
investment-to-stock price sensitivity are stronger for firms and industries more exposed to
technological progress. Section 5 concludes. We relay technical material (i.e., mathematical

proofs and the estimation of capacity overhang) to the appendix.

2 Theoretical Framework

In this section, we develop a real options investment model featuring unobservable technolog-
ical progress in the cost at which firms are able to operate new production capacity. The
main insight of the model is that managers’ investment decisions depend more on investors’
estimate of that cost as reflected in the stock price the longer ago they last acquired capacity
and thus directly observed the cost. We first state the assumptions of the model. We next
derive valuation formulas and the optimal investment rule. We finally discuss the model’s

main testable implications for the investment-to-stock price sensitivity.

2.1 Model Assumptions

Consider an all-equity-financed firm operating in continuous time indexed by ¢ € [0, +00). The
firm owns K production units (“factories”), each one allowing it to produce one output unit

per time unit when it is switched on and zero output units when it is switched off. We index



the factories by k € {1,2,..., K}. We further denote by t; the time at which the kth factory
was acquired, with ¢; < t5 < ... < tg. Since the firm is able to instantaneously and costlessly
switch on or off each factory, its output quantity per time unit is equal to @; € [0, K]. When
switched on, the kth factory incurs a production cost of Cy, per time unit. The firm sells its

output at a unit price, P;, evolving according to the GBM:

dPt = (/L—é)Ptdt—i—O'PtdBt, (1)

where 1 > 0 is the constant expected return of an output-price replication portfolio, § > 0 its
constant dividend yield, o > 0 its constant volatility, and B; a Brownian motion under the
physical (i.e., the real-world) measure P. Switching to the equivalent martingale measure

Q, we can alternatively write the output price process as:

dP, = (r — 0)P,dt + o P,dBy, (2)

where 7 is the risk-free rate and B2 a Brownian motion under the Q measure.

The firm owns one growth option allowing it to acquire the most recent modern factory
at an investment cost of I.* Due to technological progress, the cost at which the firm can
use that factory, however, differs from those of the installed factories. To be more specific,
assuming that there is a new most recent modern factory in each instant, we posit that the
(constant) cost at which the firm could operate the most recent modern factory to produce

one output unit per time unit, C;, trends downward according to the GBM:

dC't = '}/Ctdt + SCtth, (3)

where v < 0 is the constant drift, £ > 0 the constant volatility, and W; a Brownian motion

under the physical measure. In other words, the cost at which the firm would use the factory

4Tt would be trivial to award the firm further growth options. However, since we are exclusively interested
in how the firm exercises its deepest in-the-money growth option, we ignore others for simplicity.



after its installation is the “frozen-in value” of the GBM in Equation (3) at the time the
factory is acquired.” The upshot is that the costs at which the firm operates its installed
factories, Cy, , are simply past values of the GBM, with, for example, C;, equal to the value
of the process at the time the firm last acquired a factory. For simplicity, we assume that
technological progress is idiosyncratic, so W; is also a Brownian motion under the equivalent
martingale measure, and that it is uncorrelated with the output price, P;.

We next posit that neither managers nor stock investors directly observe the cost at which
the firm would use the most recent modern factory. Managers can, however, infer that cost
using two sources. First, they can infer it from the cost at which their most recently installed
factory produces output, C}, . Second, they can infer it from investors’ best estimate of the
log cost at which the firm could operate modern capacity, ¢; = In (C}), embedded in the
firm’s stock price, E¥(c;). To parsimoniously model investors’ best estimate of that log cost,

we introduce the auxiliary variable X; obeying the GBM:

where A\ and v > 0 are the constant drift and volatility, respectively, and dY; = p,dW; +
\/1—7p§dZt. Conversely, p; is a deterministic function of time ¢ and Z; a Brownian motion
independent of W; under the physical measure. It follows that Y; is a Brownian motion itself,
that W, and Y; are bivariate lognormal at each time ¢, and that the covariance between W,

and Y}, cov(W,,Y;), is given by f(f psds.® We next assume that:

Ef(ct) = ¢ + Sy, (5)

°Due to the fact that Equation (3) gives the cost at which the firm under consideration would use modern
capacity to produce output, that cost can sometimes increase over time, consistent with the insight that some
technological advances may actually not help, and in fact hurt, firms. Setting the drift rate + to a sufficiently
negative number, we can however make such situations unlikely to occur.

6We can use the Lévy theorem to show that Y; is a Brownian motion, and the moment generating function
to show that W; and Y; are bivariate lognormal at each time t.
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where z; = In (Xy), oy = E(¢;) — BiE(x), and 5, = %. In turn, the variance of investors’
forecast error, ¢, = ¢; — E(c;), equals var(c;) — S2var(x,). Critically, we choose cov(W;,Y;)
= fot psds in such a way that the variance of that error does not change over time ¢.” Under
our modelling assumptions, ¢;, ¢;,, = In(C;,.), and E7 (¢;) are multivariate normal.
Comparing the two sources of information available to managers, we highlight that while
the cost at which the firm operates its most recently installed factory, ¢;, , gives managers
precise information about the cost at which it could operate new capacity if managers acquired
the installed factory only a short while ago, the quality of that information naturally declines
with the length of time since the acquisition. The underlying intuition is that, as the time
since the last acquisition increases, managers have less hands-on experience with new capacity;,
leading their knowledge about such capacity to decrease. In contrast, assuming that investors
collect their information from large sets of firms, with some of those likely to be already
operating new capacity identical to that evaluated by the firm, it seems plausible that the
value of their information about new capacity, E¥(c;), is more stable over time. To be more
specific, while the quality of investors’ information about the cost at which the firm could
operate new capacity may generally be poor, we see no reason to expect that quality to either

improve or deteriorate over time.

2.2 Valuation and Optimal Investment Rule

Using standard valuation techniques, as, for example, described in Dixit and Pindyck (1994),

we can easily show that the value of the k' installed factory, Vi (F;), is:

b P P, <G,
Vi(P,) = ' ’ (6)
bngQ—f—Pt/é—Ctk/r; PtZCtk7

"We can write the variance of the forecast error made by investors as: var(e;) = var(c;) — B2var(x;) =

t N 2 2/t 2
&2 — (&/){272’;5%) P2 = 2 — M =% (1 - (fot psds/t)2>, where fot psds/t is the correlation between
W, and Y;. Defining fot psds/t = corry (W, Y:), we want to ensure that: 8\/&671;(6,,) = ¢2 (1 — corrt(Wt,Y})2) —

2&2tcorry (W, Yt)mrrtai(tm’yt) = 0 by appropriately choosing 8(301'1"167(2/[/1,}’0.
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where the definitions of the (1, £, b1, and by parameters are in Appendix A.

To determine the firm’s best estimate for the value of the growth option and to identify
its optimal investment rule, we first need to find the firm’s best estimate for the value of the
modern factory underlying the growth option. In Appendix A, we show that the firm’s best
estimate for the factory’s value, V*(P;, X;; Cy,. ), which depends on the current output price,
P, investors’ production cost estimate as captured by X, and the (constant) production cost

of the most recently installed factory, Cy,, is equal to:

V(P X Cu) = BB 2 C) (B [bo] B = C] P + P Jo B [Ci| P > G /)

v PP <Oy (Et [b1|P; < €] Pfl) , (7)

where P;(.) and E, H] are, respectively, the conditional probability as well as expectation
operator under the physical measure. The same appendix further reveals that all conditional
probabilities and expectations in Equation (7) are functions of the firm’s best estimate for the
log cost at which it could use the modern factory to produce output, E,[¢;], and the residual
variance of that log cost, 0?(¢;). In turn, under our assumptions, the best estimate is the

fitted value from the least-squares regression of ¢; on ¢;,. and EJ(c;):

Eilci] = cim, (8)

where ¢; = [1, ¢, E? (¢;)], and i = E[c;c}] "' E[ciey] is a [3 x 1] vector containing the optimal

combination weights. Moreover, the residual variance of the log cost is:

szz(ct) = U2<Ct) - n/var(ct)’m (9)

where 02(¢;) is the unconditional variance of ¢; measured from time ¢ = 0, and var(c;) the

unconditional [3 x 3] variance-covariance matrix of the ¢, vector.
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Having derived the firm’s best estimate for the modern factory’s value, we are now able
to determine its best estimate for the growth option’s value. Doing so is easy if we assume
that managers only ever form an estimate of the log production cost of the modern factory
at the current point in time ¢ and do not update their estimate as time progresses. In that
case, it is well known that managers optimally exercise the option when the output price P,
reaches the fixed threshold P from below. Given that insight, Appendix A shows that the

firm’s best estimate for the growth option’s value, F(P;; Xy, Cy,. ), is:®
= P, B1
F(H;Xtact;() = (V (P;Xt,CtK) - ]) f ) (10)

with P being the unique solution to the equation:

OV*(P; X,, Cy,.) (Pt)ﬁl (V*(P; X4, Cie) — 1) <Pt>ﬁl .
: _ 5 J AT

opP P P P (11)

In agreement with intuition, we can show that the optimal investment threshold P rises with
investors’ log cost estimate EZ(c;), with the effect stronger the greater the weight assigned to
E7(c;) in the firm’s optimal log cost estimate E;[c;]. In words, a lower log cost predicted by
investors—as signalled through a higher stock price—induces the firm to invest more quickly,
especially when the firm pays a lot of attention to investors’ predictions.

In the more realistic case in which managers continuously track investors’ log cost estimate,
it is unfortunately impossible to derive a quasi-closed-form solution, forcing us to determine
the firm’s best estimate for the growth option’s value numerically. The reason is that, in this
case, we have two stochastic variables, P, and X;. Also, the growth option’s value is then
time-dependent since the firm skews its best estimate for ¢; more toward E; (¢;) and away from
¢, the longer ago it last acquired capacity, as we see in subsection (2.3). Notwithstanding,
Appendix A shows that, even in that case, managers exercise the option when the output

price, P;, exceeds the threshold P, with the threshold now varying with ¢ and X;. Crucially,

8Notice X; is stated in F(.) after the semicolon, in line with us keeping it constant at its time ¢ value.

13



the threshold now also rises with X; and thus investors’ log cost estimate, with the effect

again being stronger the more attention the firm pays to investors’ prediction.

2.3 Investment-to-Stock Price Sensitivity

In the prior section, we have seen that a lower investors’ estimate for the log cost at which the
firm could operate new capacity—as signalled through a higher stock price—induces the firm
to invest more rapidly, especially when the firm pays greater attention to investors’ estimate.
In this section, we investigate in which situations the firm pays greater attention to investors’
estimate. More technically, we look into those situations in which the firm assigns a high
weight to investors’ estimate, E7(¢;), relative to the log cost of the most recently installed

factory, ¢, in its optimal log cost prediction, E,(¢;), raising its investment-to-stock price

sensitivity. Proposition 1 summarizes the conclusions from that exercise:

PROPOSITION 1: Let us denote the weights assigned to the log cost at which the firm operates
its most recently installed capacity, ci,., and to investors’ estimate of the log cost at which
it could operate new capacity, EY (c;), in the firm’s best prediction of the log cost at which it
could operate new capacity, Ei(c;), by Ney,e a0 NES (e)» respectively. Let us further denote the

time since the firm last acquired a factory by T =t — ty. It then holds that:

1 IfT=0,n¢, =1 andngs.,) =0 (i.e., the firm exclusively relies on its own information

about the production cost of new capacity when it just acquired a factory).

2. ey, /0T <0 and Ongs .\ /0T > 0 (i.e., raising the time since the firm last acquired a

factory, the firm progressively relies less on its own and more on investors’ information).

8. lim, ey, =0 and lim,_, o NES (c) = 1 (i.e., raising the time since the last acquisition

to infinity, the firm exclusively relies on investors’ information).

Proof: See Appendix A.

14



Intuitively, the proposition suggests that, if managers acquired modern capacity not so
long ago, they are able to directly observe how well their firm can exploit the latest advances
in technology. In that case, they are in no great need to consult outside sources about those
latest advances. In contrast, if managers last acquired modern capacity a long time ago, they
are less able to draw inferences from their installed capacity about modern capacity, making

them more dependent on outside sources, such as their firm’s stock price.

3 Empirical Analysis

In this section, we take the main prediction of our model (contained in Proposition 1) to the
data. Doing so requires us to condition a firm’s investment-to-stock price sensitivity on the
length of time since the firm last invested in production capacity. A key challenge confronting
our investigation is that conventional data sources (e.g., Compustat) do not contain informa-
tion on the dates on which firms invest into particular assets. To overcome this challenge, we
empirically investigate how past “capacity overhang,” which we argue serves as a valid proxy
for the length of time since the firm last acquired new capacity, conditions the corporate
investment-to-stock price sensitivity. We first introduce our methodology, variables, and data
sources. We next present our main results using alternative investment and Tobin’s () proxies
as well as controls for other investment-to-stock price sensitivity determinants. We finally

study how capacity overhang conditions the disinvestment-to-stock price sensitivity.

3.1 Methodology, Variables, and Data Sources

We rely on the following panel regression model in our estimations:

Yie = piTobin Q;1—1 + B20verhang; -1 + PB3(Overhang; -1 x Tobin @Q;4—1)

+v'Controls; ;1 + a; + aps + €4, (12)
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where Y ; is a proxy for the investments (or disinvestments) of firm i over year ¢, T'obin Q;:—1
is a proxy for its Tobin’s () at the end of year ¢t — 1, Overhang;,—; is its capacity overhang
at that time, and Controls;;_; is a vector of control variables at that time. Conversely, 3;
to (B3 are parameters, v is a vector of parameters, «; is a static firm fixed effect, and oy, is a
dynamic industry-year fixed effect based on three-digit SIC code industries.® Notice that while
By is the investment-to-stock price sensitivity of zero capacity overhang firms, 33 reveals how
a one-unit increase in capacity overhang changes that sensitivity. In estimating Equation (12)
and others, we consistently dual-cluster standard errors by firm and year.

We estimate an alternative specification in order to less parametrically identify the effect

of capacity overhang on the investment-to-stock price sensitivity:

Yi. = piTobin Q;i—1 + B20verhangTercilel;; 1 + BsOverhangTercile3; ;4
+(Bs0verhangTercilel; ;1 + PsOverhangTerciled; ;1) x Tobin Q; -1

—i—'y'Controlsi,t_l + o + o + €y, (13)

where OverhangTercilel;;_1 and OverhangTercile3;;—; are indicator variables equal to
one if the firm’s capacity overhang at the end of year ¢ — 1 is within the bottom and top
tercile, respectively, and else zero, and (3, to (5 are parameters. While ; now gives the
investment-to-stock price sensitivity of average (i.e., tercile 2) capacity overhang firms, /3,
and [5 now reveal how the sensitivities of low (i.e., tercile 1) and high (i.e., tercile 3) capacity

overhang firms differ from the sensitivity of the average firms, respectively.

Investment Measures. Our investment proxies are: (i) capital expenditures scaled by one-
year lagged assets; (ii) the sum of capital expenditures and R&D expenses scaled by lagged
assets; (iii) the change in assets scaled by lagged assets; (iv) the average of capital expenditures
over years t, t + 1, and t + 2 scaled by lagged assets; (v) the first investment proxy minus its

corresponding three-digit SIC industry mean; (vi) the sum of capital expenditures and acqui-

9We examine the robustness of our results to alternative industry classification schemes in Table C.2.
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sition expenses scaled by lagged assets; and (vii) the sum of capital expenditures, acquisition
expenses, advertising expenses, and R&D expenses scaled by lagged assets. Conversely, our
disinvestment proxies are: (i) sales of property, plant, and equipment scaled by lagged assets;

and (ii) the first disinvestment proxy minus its corresponding three-digit SIC industry mean.

Tobin’s . To proxy for Tobin’s @), we use the ratio of the market value of equity plus the
difference between the book value of assets and the book value of equity plus deferred taxes to
the book value of assets. We alternatively use the “Total @” proxy of Peters and Taylor (2017),
which adds an estimate of the replacement cost of intangible capital obtained from accumulat-
ing past investments into R&D and SG&A to the denominator of the former proxy. We also
examine the robustness of our results to the use of the “Patent Q" proxy of Woeppel (2021),
which incorporates the intangible capital stock of firms’ patents using estimates of their eco-

nomic value based on stock price reactions to patent announcements (see Kogan et al. (2017)).

Capacity Overhang. We follow Aretz and Pope (2018) in using a stochastic frontier model

to derive an estimate of capacity overhang. We can write their stochastic frontier model as:

In(K;+) = oy + ﬁ/Xz',t + Ui + Uiy, (14)

where In(K; ;) is firm 4’s log installed capacity at time ¢, X;; is a vector of optimal capacity
determinants, v;; ~ N(0,02) is the log optimal capacity residual, and u;; ~ N (y'Z;,, 02) is
the log capacity overhang residual. In turn, Z;, is a vector of capacity overhang determinants,
and N(.) and NT(.) denote the cumulative normal distribution and the cumulative normal
distribution truncated from below at zero, respectively. Finally, 3 and ~ are both parameter
vectors, 02 and o2 are parameters, and «y, is an industry fixed effect. Intuitively, the sum of
the first three terms in Equation (14) models a firm’s log optimal capacity, while the final
term models the upward deviation between its log installed and its log optimal capacity. We
offer more details about the estimation of the model, the model variables, and our method to

back out an estimate of u;, from the estimation outcomes in Appendix B.
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Aretz and Pope (2018) show that in real options models, capacity overhang is a monotone
positive transformation of the difference between the current demand for a firm’s output and
the demand threshold at which the firm would optimally expand its productive capacity. As
a result, it is evident that firms with a persistently high capacity overhang over some recent
past period will not have invested into new capacity over that period, leading their managers
to have no hands-on experience with the latest production technologies.!® Using capacity
overhang to proxy for the time since the firm last acquired capacity has the advantage that we
do not need to directly observe when firms last expanded their capacity, which is impossible
to do using standard data sources (e.g., Compustat). The reason is that US accounting
rules allow firms to consolidate their spending on a wide range of activities under the label
of “capital expenditures.” Yet, these activities include not only new capacity investments
(which correspond most closely to our model construct) but also investments in updating,
maintaining, and repairing existing assets. For this reason, any proxy based upon reported
capital expenditures (e.g., the time since a firm reported capital expenditures above a certain
threshold level) will not truly reflect the time since a firm last invested in new capacity.

We validate the capacity overhang measure by examining a subset of firms for which we
can measure the time since last they last invested in new capacity with greater precision. To
be more specific, this subset consists of firms that we are able to match to establishment-level
data from YTS. The YTS data allow us to observe the year in which a new establishment
affiliated to a firm appears, an event which we label as an “establishment opening.” Establish-
ment openings serve as a more discrete and direct proxy for a firm’s decision to invest in new
capacity compared to measures derived from firms’ reported capital expenditures, which may
include investments in new capacity as well as investments in maintaining or replacing existing

assets. Figure 2 plots the average (standardized) capacity overhang for firms sorted by the

10More in line with that reasoning, we also condition a firm’s investment-to-stock price sensitivity on its
minimum capacity overhang over the last three years, arguing that a consistently high capacity overhang over
that period implies that the firm will not have invested into new capacity over the period (see Table C.1 in
the appendix). Given that the conclusions obtained from that exercise, however, completely align with those
obtained from conditioning on capacity overhang at the start of the investment period, we ultimately decide
to use the simpler past capacity overhang proxy as the conditioning variable in our main tests.
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Figure 2. Capacity Overhang and Time Since Last Investment. This figure shows the relationship
between the average standardized capacity overhang (y-axis) and years since a firm last opened a new
establishment (x-axis). Data on plant openings is obtained for the subset of firms which we are able to
match to YTS establishment-level data.

time (in years) since they opened a new establishment that we are able to observe in the
YTS data. The figure shows a clear positive correlation between capacity overhang and the
time since a firm’s last establishment was opened.!! Firms opening an establishment in the
current year display the lowest level of capacity overhang, consistent with the fact that firms’
establishment openings optimally only occur when demand is at the investment-triggering
demand threshold or, equivalently, capacity overhang is zero. Conversely, a longer time since a
firm last opened an establishment (i.e., since the firm last invested in new capacity) translates
into a higher capacity overhang, consistent with the demand of those firms persistently being

further away from the investment-triggering demand threshold. Figure 2 provides important

external validation for the use of the capacity overhang measure in our tests.'?

11 As an alternative validation test, we also consider “net establishment openings” to account for the fact
that an establishment opening may coincide with other establishments closing, signifying reallocation of
productive capacity rather than capacity expansion. Doing so does not affect our conclusions.

12We elect to use capacity overhang as our baseline proxy for the time since a firm has last invested as
we can estimate capacity overhang for the entire public-firm universe, while we can observe establishment
openings only for the subset of firms matched to the YTS data (29% of the public-firm sample). Nevertheless,
it is reassuring to note that the two proxies are positively correlated among the set of firms for which they
are both available. In unreported tests, we further verify that our baseline results hold in the sample of
public firms matched to YTS using “years since establishment opening” in place of “capacity overhang.”
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Control Variables. Our set of control variables includes a firm’s cash flow, defined as the
ratio of the sum of net income before extraordinary items, depreciation and amortization ex-
penses, and R&D expenses to one-year lagged assets, and its size (inverse of total assets, as per
Chen, Goldstein, and Jiang (2007)). Following Chen, Goldstein, and Jiang (2007), we further
include a firm’s value-weighted and market-adjusted forward-looking three-year cumulative

equity returns. In additional tests, we include other control variables to be introduced below.

Data Sources and Summary Statistics. We obtain stock market and accounting data
over the sample period from 1981 to 2019 from CRSP and Compustat, respectively. We obtain
information on firm employment and establishments from the Your-Economy Time-Series
(YTS) database, maintained by the Business Dynamics Research Consortium at the University
of Wisconsin. The YTS database is compiled from Infogroup’s historical annual business files,
which are linked longitudinally to track location, employment, and sales information at the
establishment level. We match the YTS data to our sample of public firms using firm names
and ticker symbols. We rely on several supplemental datasets including the data on firms’
Total Q) (see Peters and Taylor (2017)) from WRDS, Patent @) from Woeppel (2021), and
institutional ownership based on form 13-F data from the Thomson Reuters Institutional
Holdings database. We winsorize all variables at the 2.5'" and 97.5" percentiles. Table 1 offers

descriptive statistics showing our sample is representative of the universe of public firms and

similar to those used in prior studies (see, e.g., Chen, Goldstein, and Jiang (2007)).

TABLE 1 ABOUT HERE.

3.2 Baseline Results

Table 2 presents the results from estimating the regression in Eq. (12), with columns (1) to
(7) using each of our alternative investment proxies as dependent variable. Consistent with
prior literature, the table offers strong evidence that managers condition their investments

on their firm’s stock price. In line with our novel theoretical predictions, it further suggests
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that the managers of high capacity overhang firms rely more on that price than those of low
capacity overhang firms. While the Tobin’s () coeffcient in the CAPEX regression in column
(1) is, for example, 0.434 (t-statistic: 3.31) for zero capacity overhang firms, an extra unit
of capacity overhang raises that coefficient by 0.450 (¢-statistic: 5.06) to 0.884, suggesting a
significantly higher investment-to-stock price sensitivity for high capacity overhang firms. The
other regressions yield similar results. In fact, the most comprehensive definition of invest-
ment (including expenditures on capital, R&D, advertising, and acquisitions; see column (7))
reveals that zero capacity overhang firms (those with relatively recent investment in capacity)
have a statistically insignificant investment-to-stock price sensitivity. This sensitivity rises
substantially (by 1.937) for firms with a capacity overhang value equal to one. The table also
suggests that high capacity overhang firms invest less than low capacity overhang firms, in
line with the idea that their start-of-year demand is further below the investment-triggering

demand threshold than the demand of low capacity overhang firms.

TABLE 2 ABOUT HERE.

In our next set of tests in Table 3, we allow for a non-linear relationship between capacity
overhang and the investment-to-stock price sensitivity, estimating the regression in Eq. (13)
in which we condition the sensitivity on tercile indicator variables derived from Overhang, and
not on Ouerhang itself. The table suggests that capacity overhang can have a stronger positive
effect on the investment-to-stock price sensitivity at higher capacity overhang levels. While
bottom tercile capacity overhang firms, for example, produce a 0.267 (t-statistic: —5.68) lower
Tobin’s @ coefficient in the CAPEX regression in column (1) than middle tercile firms, top
tercile firms produce a significantly higher coefficient of 0.126 (¢-statistic: 2.17) than those
same firms. While the regressions in columns (4), (5), and (6) generate similar results, the
effect of capacity overhang is more symmetric in those in columns (2), (3), and (7) in which
our investment proxy considers assets other than physical productive capacity. In comparison

to the conditioning effect of capacity overhang, the table finally suggests that the direct effect
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Figure 3. The Effects of Capacity Overhang on Investment and the Investment-to-Stock Price
Sensitivity. This figure plots the coefficients on capacity overhang decile indicator variables (Panel A) and
interactions between Tobin’s @ and the indicator variables (Panel B) from estimating Eq. (13) using decile
(rather than tercile) indicator variables. We use the sum of capital expenditures and R&D expenses scaled
by lagged assets as investment proxy and capacity overhang decile 6 as reference group. The dots are the
coefficient estimates, whereas the vertical lines are the 95% confidence bounds of the coefficient estimates.

of capacity overhang is more symmetric, with bottom (top) tercile capacity overhang firms

investing significantly more (less) than middle tercile firms in all seven columns.

TABLE 3 ABOUT HERE.

To graphically illustrate the effect of capacity overhang on investment and the investment-
to-stock price sensitivity, Figure 3 plots the coefficients on the Overhang indicators (Panel A)
and the interactions between Tobin@ and the indicators (Panel B) from a regression similar
to Eq. (13) but using decile (and not tercile) Overhang indicators. We use the sum of capital
expenditures and R&D expenses scaled by lagged assets as investment proxy in that regression
and Overhang decile 6 as reference group. Panel A confirms that this regression also suggests
an almost monotonically negative relation between investment and capacity overhang. More
importantly, Panel B confirms that it also suggests a close to monotonically positive relation
between the investment-to-stock price sensitivity and capacity overhang. Notably, firms with
the highest capacity overhang levels (decile 10) exhibit a disproportionately high investment-to-
stock price sensitivity. This figure provides important support for our theoretically-motivated

insight that the managers of those firms with the highest capacity overhang (i.e., the longest

22



3 “
=2
1]
1%} 4
<
T o1 A
5 &
s 9
[}
8% o &
is "
2 e =
s
o 1-
a
o
<
g 2
Q =
@10 -
8 g 10
e ] 8
Decfles 5 T /A"‘//(s 6 7
OfTob~ 3 2‘>\X 3 4 ng
g 1T~ 2 . Ooverhd
Q gcavac‘w
Deci\eso

Figure 4. Investment, Tobin’s @), and Capacity Overhang. This figure shows mean investment (on
the y-axis) by capacity overhang decile (on the x-axis) and Tobin’s @ decile (on the z-axis). We use the
sum of capital expenditures and R&D expenses scaled by lagged assets as investment proxy. The colors
toward the red (blue) end of the spectrum indicate higher (lower) levels of investment.

duration since they last acquired modern capacity) guide their investment policies based on
external signals (e.g., their stock market valuation) the most.

To further explore how investment, Tobin’s ), and capacity overhang are related, Figure 4
plots mean firm investment (on the y-axis) by capacity overhang decile (on the x-axis) and
Tobin’s @ decile (on the z-axis), where we again use the sum of capital expenditures and
R&D expenses scaled by lagged assets as investment proxy. The figure clearly suggests that
investment increases with Tobin’s ) for each of the capacity overhang deciles. The increase
is, however, only mild for the low capacity overhang deciles, while it steepens considerably for
the higher deciles. Also interestingly, the figure suggests that the relation between investment
and capacity overhang is negative for low and moderate Tobin’s ) deciles, but positive for

the highest decile. This suggests that the managerial learning effect uncovered by us can be

sufficiently large to overturn the sign of the investment-capacity overhang relation.

3.3 Additional Analyses

Since our baseline results could be attributable to measurement error in our Tobin’s @) proxy

and /or capacity overhang proxying for omitted well-known determinants of the investment-
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to-stock price sensitivity, we next reestimate Eq. (12) using alternative and plausibly more
accurate Tobin’s () proxies and controlling for those determinants. We first use the alternative
proxies and then control for the omitted determinants. We also look into an alternative firm

investment measure by considering the employment growth-to-stock price sensitivity.

3.3.1 Alternative Tobin’s Q Proxies

One concern with our traditional Tobin’s () proxy is that it does not reflect a firm’s intangible
capital stock in the denominator. If intangible capital stock makes up a large portion of a
firm’s asset base, this omission would introduce measurement error into our empirical tests,
potentially biasing our results. To alleviate these concerns, we next reestimate regression (13)
using Peters and Taylor’s (2017) Total @ and Woeppel’s (2021) Patent @) instead of the
traditional Tobin’s () proxy. Total () improves upon the traditional proxy by estimating the
value of a firm’s intangible capital stock through capitalizing its R&D and a portion of its
SG&A expenses and adding that estimate to the denominator. Similarly, Patent ) improves
upon the traditional proxy by incorporating the replacement cost of patent capital based on
patent market value estimates computed by Kogan et al. (2017). Table 4 reveals that the results
from the regressions using the alternative Tobin’s () proxies completely agree with our baseline

results. Thus, it is unlikely that measurement error in Tobin’s () drives our conclusions.

TABLE 4 ABOUT HERE.

3.3.2 The Employment-to-Stock Price Sensitivity

We next examine the sensitivity of firms’ decisions to invest in human capital (as opposed to
physical capital) as a function of stock market valuations and capacity overhang. Given that
investments in physical capital generally require additional investments in human capital (e.g.,
to operate the new physical assets), our model predictions on fixed capital investment nat-
urally extend to firms’ decisions to invest in human capital. To empirically test our model

predictions on human capital investments, we rely upon establishment-level employment
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data from YTS and define Emp Growth as the annual percentage change in the number of
employees at all establishments operated by a single firm. We subsequently reestimate our
baseline specification in Eq. (12) using Emp Growth as alternative dependent variable.
Table 5 reports the results from that exercise. The coefficient estimates in columns (1)
through (3) show evidence that firms’ employment-to-stock price sensitivity increases with
capacity overhang in case of all our Tobin’s ) proxies. The positive and statistically significant
interaction coefficients on @Q x Overhang suggest that firms increase their employment in
response to higher stock prices when they have not invested in capacity recently (i.e., when
their capacity overhang is high). Columns (4) through (6) provide further support for this
idea, showing that corporate employment is insensitive to stock prices among low capacity
overhang firms (i.e., those in the lowest tercile). These results completely align with our model
prediction that managers learn more from stock markets when their firms have not invested
in new capacity for a long time. They further corroborate our baseline findings on fixed
capital investment in Tables 2 and 3 and provide novel insights into how managerial learning

from stock prices affects firms’ decisions to invest in physical as well as human capital.

TABLE 5 ABOUT HERE.

3.3.3 Controlling for Private Investor Information

Chen, Goldstein, and Jiang (2007) show that the investment-to-stock price sensitivity rises
with the amount of private investor information in stock prices. As there could be more such
information in the stock prices of high relative to low capacity overhang firms, it may be that
our baseline results simply reflect a private information effect. To mitigate that concern, we
reestimate regression (13) controlling for two popular private investor information proxies,
namely Durnev, Morck, Yeung, and Zarowin’s (2003) stock non-synchronicity and Easley,
Kiefer, O’Hara, and Paperman’s (1996) probability of informed trading (PIN). While stock
non-synchronicity is one minus the R-squared from a regression of the stock’s return on

the market return and its associated-industry return, PIN is a structural model estimate of
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the probability of informed trading in the firm’s stock. Adding both control variables and
their interactions with Tobin’s @) to our regressions, Table 6 shows that capacity overhang
continues to condition the investment-to-stock price sensitivity as in our baseline tests. The
upshot is that the effect of capacity overhang on the investment-to-stock price sensitivity
still supports the predictions of our theoretical framework even after accounting for the

conditioning effect of private information in stock prices on that sensitivity.

TABLE 6 ABOUT HERE.

3.3.4 Alternative Information Sources: Trade and Professional Associations

Our next analysis addresses the notion that managers may learn about the characteristics
of modern production capacity through alternative sources of information apart from their
own previously-installed capacity and investors’ information reflected in their stock prices.
A potential alternative information channel through which managers may obtain such in-
formation is an industry trade or professional association.!® It is reasonable to expect that
the presence of active trade and professional associations in a firm’s industry will reduce
the extent to which managers rely on stock prices to learn about technological advances in
that industry. We test this idea using comprehensive information on the presence of trade
and professional associations across various industries compiled by the US Department of
Labor.!* We re-estimate our baseline specification in Eq. (12) within subsamples of firms,
first conditioning on the existence of a trade and professional association in a firm’s industry,
and second, conditioning on the existence of a trade and professional association that offers

professional certification in its industry. The results are reported in Table 7.

TABLE 7 ABOUT HERE.

13Such associations have been shown to aid in the dissemination of information in the context of firms
forming and maintaining cartels and anti-competitive agreements (see Levenstein and Suslow (2006, 2011)).

4We obtain the data at the level of NAICS 3-digit industry codes from the following URL:
<https://www.careeronestop.org/Toolkit /Training/find-professional-associations.aspx>.
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Comparing the coefficient estimates in the odd numbered columns with those in the even
numbered columns, it is evident that the conditional investment-to-stock-price sensitivity is
substantially higher among firms in industries without trade and professional associations.
The differences in these conditional sensitivities are statistically significant in two out of
three investment proxies considered in both Panels A and B of Table 7. The results imply
that managerial learning from stock prices for high capacity overhang firms is muted when
alternative mechanisms for information sharing are present in the industry. On the other
hand, in the absence of these associations, the learning dynamics predicted by our model are

particularly pronounced.

3.3.5 Controlling for Financial Constraints

Baker, Stein, and Wurgler (2003) argue that a firm’s investments rise with its stock market
valuation since a higher stock price enables financially constrained firms to raise more capital,
easing financial constraints and promoting investment. To establish that our baseline results
are not entirely driven by the easing of financial constraints, we run two sets of robustness
tests. In the first, we reestimate the specification in Eq. (12) controlling for a firm’s equity
as well as debt issuances. In line with Hovakimian, Opler, and Titman (2001), we define an
equity issuance indicator equal to one if net equity issued for cash scaled by assets exceeds 5%
and else zero, and a debt issuance indicator equal to one if the annual change in short-term
plus long-term debt is positive and else zero. Adding those indicators to our regressions,
Table 8 suggests that investment naturally rises with equity and debt issuances. More
crucially, however, the table further suggests that adding the indicators does not subsume
our baseline results, with the coefficient on the interaction between the low capacity overhang
tercile indicator and Tobin’s () remaining negative and highly significant for six out of seven
investment proxies. Controlling for states in which firms actually issue debt and equity (which
may be concurrently driven by rising stock market valuations), we thus continue to find that

capacity overhang positively conditions the investment-to-stock price sensitivity.
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TABLE 8 ABOUT HERE.

In our second set of tests, we rerun the specification in Eq. (12) separately on subsamples
classified as constrained and unconstrained according to several well-known ex-ante financial
constraints proxies from the literature. In particular, we assign firms to subsamples based on
whether their (1) Hadlock and Pierce (2010) size-age index value; (2) Whited and Wu (2006)
financial constraints index value; (3) Hoberg and Maksimovic (2015) text-based financial
constraints measure value; or (4) total payout level lies above or below the median.'® We use
the payout level as constraints measure since Almeida and Campello (2007) argue that
lower-payout firms are more financially constrained than those with higher payouts.

Table 9 reports the results from the subsample regressions. In the first six columns of the
table, we report the coefficient estimates for the interaction term Tobin ) x Overhang for
those firms classified as constrained or unconstrained according to the financial constraints
indexes. Comparing across columns, it is obvious that those coefficient estimates are positive
and highly significant for both types of firms. Even more remarkably, it is further obvious that
the coefficient estimates are consistently higher in the subsamples of unconstrained rather
than the subsamples of constrained firms. The finding that the managers of unconstrained
high-capacity-overhang firms respond more to stock market signals than those of equivalent
constrained firms is fully consistent with the notion that firms can only respond to stock
market signals in their investment decisions when they have access to capital. In other words,
the managers of constrained firms are less able to respond even when they pay close attention
to the stock market and the stock market sends them a strong signal to invest. The last two

columns finally show that our results are similar across high and low payout firms.

TABLE 9 ABOUT HERE.

The key insight to take away from the tests in this subsection is that our baseline results are

unlikely to be entirely due to the concurrent easing of financial constraints, as signalled through

15We measure total payouts using the total dividends plus stock repurchases-to-operating income ratio.
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equity and/or debt issuances or low financial constraint index values. Controlling for the
easing of such constraints, we continue to find that capacity overhang has an almost identical
effect on the investment-to-stock price sensitivity as in Tables 2 and 3. These results are also
reassuring in that they suggest that our findings are unlikely to be fully explained by the idea

that markets anticipate the future exercise of real options for high capacity overhang firms.

3.3.6 Controlling for Institutional Ownership

Our model’s prediction that managers learn more from the stock market when their existing
capacity is outdated and thus uninformative about the latest production technology advances
crucially relies on the idea that investors have more stable information on such advances. That
idea is plausible since most investors hold diversified portfolios of firms likely including firms
which have already adopted the latest technologies. In that case, it makes sense for investors
to incorporate what they know about those technologies into their valuations of firms which
may still adopt them later. Critically, the ability of investors to gather information and to
incorporate it into stock prices is likely higher for more sophisticated investors, as, for example,
institutional investors. The upshot is that the managers of a firm with an outdated capital
stock should rely more on the stock market in their investment decisions when sophisticated
institutional investors hold a larger percentage of their outstanding share capital.

In Table 10, we test how institutional ownership conditions our main results, augmenting
the baseline specification in Eq. (12) by including an institutional ownership proxy and its
interactions with T'obin () and Overhang. The institutional ownership proxy, High IO, takes
the value of one for firms whose percentage of outstanding shares held by investors filing 13-F
forms is above the median and else zero. The table shows that our baseline results continue
to hold controlling for institutional ownership, with the coefficient on the Tobin Q-Overhang
interaction term remaining positive and statistically significant for all seven investment
proxies. More importantly, the coefficient on the T'obin QQ-Overhang-High IO interaction

term is positive and significant in six out of seven cases, supporting our hypothesis that the
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managers of high-capacity-overhang firms extract more investment-relevant information from

stock markets when there are more institutional investors holding their stock.®

TABLE 10 ABOUT HERE.

3.4 The Disinvestment-to-Stock Price Sensitivity

We next study an interesting twist to our main prediction. The twist is that capacity overhang
also conditions the disinvestment-to-stock price sensitivity. Assuming that managers have
imperfect information about what they receive both when investing and disinvesting, it seems
reasonable to conjecture that, in case of disinvestments, the imperfect information is about
the liquidation value of their installed assets.!” If we further assume that managers directly
observe liquidation values upon disinvesting and that stock prices reflect investors’ estimates
of those values, we have the prediction that the managers of firms which have disinvested
capacity only recently rely less on their stock prices to guide their disinvestment decisions
than those of otherwise equivalent firms which have not disinvested for some time.
Reestimating regressions (12) and (13) using our disinvestment (not investment) proxies
as dependent variable, Table 11 strongly supports our prediction. Relying on sales of property,
plant, and equipment scaled by lagged assets as disinvestment proxy, column (1), for example,
suggests that a one-unit drop in Tobin’s ¢ induces disinvestments to fall by 0.083 (¢-statistic:
—5.53), implying that high-stock-price firms disinvest less than low-price firms. Crucially,
however, column (4) reveals that the disinvestment-to-Tobin’s @ sensitivity of bottom capacity
overhang tercile firms is 0.068 (¢-statistic: 3.09) more positive than that of middle tercile firms,
while showing no significant difference in that sensitivity across middle and top tercile firms. In

line with our argumentation, the disinvestments of low-capacity-overhang firms (which have

16Consistent with Chen, Goldstein, and Jiang (2007), we confirm that the direct effect of high institutional
ownership on the investment-to-stock price sensitivity is negative, as can be seen from the negative and
significant coefficients on the interaction term between Tobin @@ and High I10.

"In theory, it is also conceivable that managers learn about the value of the option to reacquire the
sold-off capacity in the future. In practice, however, the option to reacquire will be so far out-of-the-money
on the disinvestment date that the stock price is unlikely to give a strong signal about it.
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likely not disinvested capacity for some while) thus respond more positively to their stock
prices than those of high-capacity-overhang firms (which have likely disinvested capacity not
so long ago). Relying on the alternative regression specification or the industry-adjusted

disinvestment proxy, we find consistent results in columns (2), (3), and (5).

TABLE 11 ABOUT HERE.

Overall, this section suggests a robust positive association between capacity overhang and
the investment-to-stock price sensitivity, as predicted by our theoretical work in Section 2. The
positive association emerges under a wide variety of investment and Tobin’s ) proxies and
survives controlling for other well-known determinants of the sensitivity.'® The section also
suggests a negative association between capacity overhang and the disinvestment-to-stock

price sensitivity, which can be explained using an extension of our theory.

4 The Role of Technological Progress

Our theoretical analysis posits that unobserved technological progress in modern production
capacity is the channel through which capacity overhang influences the investment-to-stock
price sensitivity. The reason is that the managers in our model cannot directly observe the
cost at which their firm is able to operate modern capacity and must thus infer that cost from
the firm’s installed capacity and its stock price, with the installed capacity signal, however,
becoming increasingly less accurate relative to the stock price signal with the time since
the firm last acquired capacity. An implication is that we expect the rate of technological
progress in a firm’s production capacity to condition the effect of capacity overhang on the
investment-to-stock price sensitivity. In the absence of technological progress, the installed

capacity signal would, for example, always be a perfect predictor of the cost at which the

8In an additional robustness test, we examine the possibility that changes in capacity overhang may
coincide with CEO turnover events. In Table C.3, we explicitly control for whether a firm changed its CEO
in a given year, and find that our baseline results continue to obtain.
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firm could operate modern capacity, inducing managers to entirely rely on that signal—and
to entirely ignore the stock price signal—in their investment decisions.

Motivated by these insights, we next investigate how technological progress conditions the
relation between capacity overhang and the investment-to-stock price sensitivity documented
in Section 3. To do so, we create an indicator variable equal to one if the number of citations
for the patents issued to all firms in a firm’s three-digit SIC industry over the prior year
is above the third tercile and else zero (“High Tech”). The idea is that a large number of
citations for the patents issued to the firms in an industry indicate that there were a significant
number of scientifically important innovations in that industry which, presumably, also led to
important innovations in the production capacity used in that industry. We obtain the patent
data from Leonid Kogan, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman.!® We then

estimate the following augmented version of the regression model in Eq. (12):

Yie = piTobin Q;1—1 + B20verhang; -1 + P3(Tobin Q;1—1 X Overhang; ;1)
+B4(Tobin Q; -1 x High Tech;;_1) + Ps(Overhang; -1 x High Tech;;_1)
+B6(Tobin Q;1—1 x Overhang;,—1 x High Tech;;_1)

+v'Controls; ;1 + a; + oy + €4, (15)

where 3 to s are parameters.?’ While 33 reveals the effect of capacity overhang on the
investment-to-stock price sensitivity for firms in low-technological-progress industries, (g
shows how that effect differs for those in high-technological-progress industries.

Table 12 shows the results from estimating Eq. (15), with each column focusing on one of
our seven investment proxies. Except for the regression relying on the total assets investment
proxy, the table strongly supports our prediction that capacity overhang exerts a stronger

positive effect on the investment-to-stock price sensitivity for firms in industries with more

19The URL address is: <https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-
and-Growth-Extended-Data>. See Kogan, Papanikolaou, Seru, and Stoffman (2017) for details.

2ONote that Eq. (15) does not include High Tech;; 1 since its effect is subsumed by the dynamic
industry-year fixed effects.
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technological progress. The CAPEX regression in column (1), for example, suggests that
the effect is an insignificant 0.066 (¢-statistic: 0.45) for firms in low-progress industries but
rises significantly by 0.380 (¢-statistic: 2.81) for those in high-progress industries. Rather
remarkably, the table further shows that the effect of capacity overhang is insignificant for

firms in low-progress industries in case of four of our seven investment proxies.

TABLE 12 ABOUT HERE.

While Eq. (15) exploits cross-industry variation in technological progress to condition the
effect of capacity overhang on the investment-to-stock price sensitivity, we next also conduct
a test exploiting within-industry variation. To do so, we recognize that each industry features
technology leaders (i.e., those firms that introduce new technologies first) and followers (i.e.,
those that introduce the technologies later). While technology leaders quickly learn about
the characteristics of modern capacity from their own operations, technology followers are
less able to do so, leading them to benefit more from also considering investors’ information
embedded in their firms’ stock prices. The implication is that, for each capacity overhang
level, the investments of technology followers are expected to depend more on the stock
price than those of leaders. Sorting firms into terciles based on the time since they last
filed a patent by three-digit SIC industry and interpreting the top (bottom) tercile firms as
technology leaders (followers), we next reestimate Eq. (13) separately by tercile to test that
hypothesis. Plotting the estimation results in Figure 5, our evidence clearly supports the idea
that technology followers pay more attention to the investment-relevant information included
in stock prices than technology leaders at each level of capacity overhang.

Our first two tests conditioning on technological progress in Table 12 and Figure 5 could
possibly suffer from endogeneity. To address those concerns, we next repeat our conditioning
tests using an instrument for the amount of technological progress to which a firm is exposed
developed by Bloom, Schankerman, and van Reenen (2013). The instrument, Spill, is the
technological-proximity weighted sum taken over the exogenous R&D stocks of firms other

than the current in the prior year, where the exogenous R&D stock is the capitalized value of
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Figure 5. Investment-to-Stock Price Sensitivities Conditional on the Time Since the Last
Patent. The figure plots the investment-to-stock price sensitivity at various capacity overhang levels
separately by terciles sorted on the time since the firm last filed a patent. We obtain the estimates by
reestimating regression (13) separately by tercile. We form the terciles separately within industry.

those portions of R&D expenses explained by state and federal tax credits.?! As such, Spill
is likely to be a strong instrument not only because it abstracts from the current firm but
also because it only considers the exogenous parts of firms’ R&D stocks.

Table 13 gives the results from estimating Eq. (12) separately for firms with high and low
Spill values (columns (1) to (4)), Eq. (15) with High Tech replaced by High Spill (columns (5)
and (6)), and an augmented version of Eq. (13) interacting Tobin’s @), the capacity overhang
tercile indicators, and their interactions with High Spill (columns (7) and (8)).?> We define
high (low) Spill firms as those with a top (bottom) tercile Spill value. In accordance, High

Spill is an indicator variable equal to one for firms with a Spill value in the top tercile and

zero for those with a value in the bottom tercile. The instrumented regressions also suggest

21To be precise, we can write the instrumented amount of technological progress to which firm i is exposed

in year t, Spill;, as Z#j w;;G ¢, where the weight between firm ¢ and j, w;;, equals % and
G is the instrumented R&D stock of firm j. In turn, 7; is a [426 x 1] vector containing the proportions
of patents in 426 technology classes issued to firm ¢ over the 1970 to 1999 period. The instrumented R&D
stock of firm j in year t is calculated by capitalizing the predicted value of R&D expenses obtained from a
regression of the log of those expenses on the logs of state and federal R&D tax credits.

22When we reestimate regression (15) with High Tech replaced by High Spill we need to add High Spill
as separate exogenous variable since the dynamic industry-year fixed effects do not subsume its effect. We
also control for possible product market spillovers (or business stealing effects) from rival firms using the
corresponding variable defined by Bloom, Schankerman, and van Reenen (2013).
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that the effect of capacity overhang on the investment-to-stock price sensitivity is stronger
the more a firm is exposed to technological progress. Using CAPEX plus R&D expenses as
investment proxy, column (5), for example, reveals that while the effect is 1.243 (¢-statistic:
7.36) for low-Spill firms, the same effect is a significant 0.898 (¢-statistic: 2.23) higher for

high-Spill firms. The other regressions yield comparable estimation results.

TABLE 13 ABOUT HERE.

All in all, our evidence in this section suggests that firms exposed to more technological
progress produce a more positive effect of capacity overhang on the investment-to-stock price
sensitivity, as predicted by our theoretical work. Importantly, those conclusions emerge both

in standard correlation-based as well as in causal-inference-based tests.

5 Concluding Remarks

We argue that, in a world with unobservable technological progress, managers learn investment-
relevant information about the operating characteristics of modern capacity both from their
installed capacity and investors’ opinions about those characteristics embedded in their firm’s
stock price. Crucially, however, the accuracy of the installed capacity signal deteriorates
relative to the accuracy of the stock price signal with the length of time since the firm last
acquired capacity, leading the managers of firms which have not invested for a long time
to rely more on stock prices. Using Aretz and Pope’s (2018) capacity overhang estimate
to proxy for the length of time since the firm last acquired capacity, we offer empirical
evidence that high capacity overhang firms have a significantly higher investment-to-stock
price sensitivity than low capacity overhang firms, supporting our theoretical reasoning. In
line with technological progress being the channel through which capacity overhang affects
the investment-to-stock price sensitivity, we further show that the effect of capacity overhang
is stronger for firms or industries exposed to more technological progress. Our results provide

crucial insights into the nature of the information that managers learn from stock prices and
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on how that information affects their real-side decisions. They further suggest that stock
markets may play a role in the diffusion of innovation by facilitating managerial learning

about technological developments across firms.
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Table 1. Summary Statistics

This table reports summary statistics for the main variables used in our empirical analysis. Invcapgx is capi-
tal expenditures scaled by one-year lagged assets; Invcaprx & reD is capital expenditures plus R&D expenses
scaled by lagged assets; Inva assets is the change in annual assets divided by lagged assets; Invcapgxs is the
average of capital expenditures over years ¢, t 41, and ¢ 4 2 scaled by lagged assets; Invr,qaq; is capital expen-
ditures scaled by lagged asset minus the three-digit SIC industry mean at that time; Invcaprx & Acq Is capital
expenditures plus acquisitions scaled by lagged assets; and Inwv 4 is capital expenditures plus R&D expenses
plus acquisitions plus advertising scaled by lagged asset. Disinvgppg is sale of property, plant, and equipment
scaled by lagged assets, while Disinvr,qaq; is sale of property, plant, and equipment scaled by lagged assets mi-
nus the three-digit SIC industry mean at that time. Emp Growth is the year over year change in the total num-
ber of employees of a firm as per the YTS database. Tobin @) is the market value of equity plus the book value
of assets minus book value of equity plus deferred taxes scaled by the book value of assets. Cash Flow is net
income before extraordinary items plus depreciation and amortization expenses plus R&D expenses scaled by
lagged assets. Size is log total assets. Retsy is the value-weighted and market-adjusted forward-looking three-
year cumulative equity return. Overhang is an estimate of capacity overhang estimated using a stochastic fron-
tier model, as calculated by Aretz and Pope (2018). Total @ is the market value of equity plus the book value
of assets minus book value of equity plus deferred taxes scaled by the sum of the book value of assets and an esti-
mate of the intangible capital stock’s value, as calculated by Peters and Taylor (2017). Patent @ is the market
value of equity plus the book value of assets minus book value of equity plus deferred taxes scaled by the sum of
the book value of assets and an estimate of the patent stock’s value, as calculated by Woeppel (2021). Async is
stock price non-synchronicity, while PIN is the probability of informed trading from the market microstructure
model of Easley et al. (1996). All variables are winsorized at the 2.5% level. The sample period is 1981 to 2019.

Variable Mean SD Min Median  Max N

Invcapex 0.070 0.078  0.002 0.043  0.362 106,925
InvcAPEX & R&D 0.126 0.130  0.005 0.083  0.587 106,925
INUA Assets 0.126 0.348 -0.422 0.056 1.447 106,925
InvcapExs 0.080 0.088  0.004 0.049  0.417 90,107
Invrnaad; -0.041 0.125 -0.557 -0.021 0.189 106,925
INVeAPEX & Acq 0.101 0.122  0.002 0.057  0.567 106,925
Invyy 0.158 0.164  0.005 0.103  0.749 106,925
Disinvsppg 0.004 0.012  0.000 0.000  0.061 106,925
Disinvingad; -0.003 0.012 -0.038 -0.002 0.042 106,925
Emp Growth 0.074 0.328 -0.433 0.000 1.500 33,892
Tobin Q 1.910 1.333  0.692 1439 6.821 107,342
Cash Flow 0.021 0.198 -0.703 0.070  0.303 106,855
Size 5.175 2140  1.209 5.061  9.746 107,401
Retsy -0.068 0.880 -2.419 0.093 1.479 107,401
Overhang 0.600 0.281  0.213 0.527  1.404 107,401
Total Q 1.091 1.482 -0.348 0.625  6.954 103,228
Patent Q 2.162 3.810 -0.951 0.888 18.812 104,900
Async 0.796 0.251  0.056 0.911  0.999 107,401
PIN 0.207 0.109  0.031 0.191  0.467 87,030
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Table 5. The Effect of Capacity Overhang on the Employment-to-Stock Price Sensitivity

This table presents the results from regressing employment growth on different combinations of the standard
Tobin’s @ proxy, Total @, or Patent @, capacity overhang, a dummy variable equal to one if capacity
overhang is in the bottom tercile and else zero, a dummy variable equal to one if capacity overhang is in the
top tercile and else zero, an interaction between each Tobin’s () proxy and capacity overhang, interactions
between the Tobin’s Q proxies and the capacity overhang dummies, and controls. Total @ is defined as
per Peters and Taylor (2017) and Patent @ as per Woeppel (2021). The controls are size, cash flow, and
three-year stock returns. The plain numbers are parameter estimates, while those in parentheses are standard
errors dual-clustered at both the firm and year level. Note that the table shows only the parameter estimates
and t-statistics for the most relevant regressors. All regressions include static firm fixed effects and dynamic
industry-year fixed effects derived from three-digit SIC industries. The final rows of the table also show
the number of observations and the adjusted R-squared (R?). The definitions of the regression variables
are provided in the caption of Table 1. The sample period is 1981 to 2019.

Emp Growth
Tobin@ Total@ PatentQ Tobin@) Total@ PatentQ
(1) (2) (3) (4) (5) (6)
-0.625 -0.256 —0.029%** 0.665* 1.0127%** 0.040
Q (0.389) (0.317) (0.010) (0.349) (0.345) (0.091)
O x Overh 1.454%%* 1.547%* 0.081**
vernang (0.583) (0.587) (0.034)
: 1.338* 0.490 -0.032
OverhangTercilel (0.710) (0.531) (0.555)
: -0.958 —0.985* —1.242%*
OverhangTercile3 (0.845) (0.564) (0.452)
. —0.732%* —0.644** —-0.043
Q@ x OverhangTercilel (0.332) (0.303) (0.091)
b , -0.105 —-0.136 -0.013
Q x OverhangTercile3 (0.361) (0.352) (0.088)
Firm Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year x Industry FE Yes Yes Yes Yes Yes Yes
Observations 27,269 27,217 26,594 27,269 27,217 26,094
R? 0.221 0.222 0.218 0.221 0.221 0.218

Statistical significance levels: *** p—value<0.01, ** p—value<0.05, * p—value<0.10.
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Appendix A Mathematical Proofs

In this appendix, we derive the closed-form or quasi-closed-form solutions for the real options
model introduced in Section 2. We first value the firm’s installed capacity, the modern capacity
underlying its growth option, and its growth option. We value the growth option assuming that
the firm only observes the stock price signal at the current time or that it observes the signal
continuously. We next prove Proposition 1, suggesting that the firm’s investment-to-stock

price sensitivity rises with the length of time since the firm last acquired capacity.

A.1 Firm Valuation
A.1.1 Valuing the Installed Capacity
We can use standard valuation techniques (see, e.g., Dixit and Pindyck (1994)) to show that

the value of the installed capacity unit (“factory”) indexed by k, Vi (P,), is equal to:

b PP P < C
Py =4 " e (A.1)

bQ‘Ptﬁ2+Pt/6_Ctk/r; PtZCtk7

where the (1, B2, b1, and by parameters are equal to:

g = = ‘50_2 ) % [(r—6—0%/2)? + 2r0*] V" > 1, (A.2)
g, = = 50_2 /2 _ % [(r =6 —0%/2)* + 2r0?]"? <0, (A.3)
b = %(CM e} (A.4)
by = %(ak)l—@ > 0. (A.5)

A.1.2 Valuing the Modern Capacity Underlying the Growth Option

To value the growth option, we first need to derive the firm’s best estimate of the value of

the underlying modern capacity, which depends on the output price P, and on the firm’s best
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estimate of the log cost at which it could operate the most recent modern capacity ¢;. In
turn, the firm’s best estimate of that log cost depends on the log cost at which it operates
its most recently installed capacity, ¢;,, and the current value of the variable determining
investors’ best estimate of the log cost at which the firm can operate the most recent modern
capacity, X;. Denote the profit generated by the most recent modern capacity at time u >t
by ¥(P,; C;). Using risk-neutral valuation techniques, we can write the firm’s best estimate

of the most recent modern capacity’s value, V*(P;, Xy; Ct,. ), as:
V*(Py X4 Ce) = BP { / e (P ngu} : (A.6)
t
Using the law of total probability, we can rewrite Equation (A.6) as:

V* (P, Xi;Cyy) = PE(P, > CEP { / e "y (Py; Cy)du| Py > Ct}
t
+ PP, < CE? { / e "Dy (P,; Cy))du| P, < ct} . (A7)
t

where PP() is a probability under the Q measure. Given idiosyncratic technological progress

and using the law of iterated expectations, we can rewrite Equation (A.7) as:

V(P Xy Cy) = PP > CEY |EP [ / e—““—”«p(PH;Ct))du}Ct} \Ptzct}
t

+ PP, < C,)EY {E? { / e " (Py; Ot))duICt} 1P < Ct} :
t

(A.8)

where P;(.) is a probability under the P measure.

Conditional on P, > C; and C}, the value of modern capacity equals the value of switched-
on existing capacity, with Cy,., however, replaced with Cy (see the lower component solution
in Equation (A.1)). Conversely, conditional on P, < C; and C}, its value equals the value of

switched off existing capacity, with C;, replaced with C; (see the upper component solution
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in the same equation). We can thus write the conditional expectations in Equation (A.8) as:

E2 {EP { / ey Py; C’t)du‘Ct} | > C’t] =E2 [bng? + P,/ — Cyfr| P > ct]
t

- E? [b2|PtZCt} Pt62+f)t/5_]EiﬁQ [Ct‘PtZCt] /T, (A.9)

with EP [bs| P, > €] = B, [be| P > Cy] and EP [C| P, > €] = E, [Cy|P, > C,] due to the fact

that technological progress is idiosyncratic, and:

E2 []E? [ / ey Py; ct)du}ot] 1P, < Cy| =E} [blpfl 1P < ct} =E? [b|P, < C] P,
t

(A.10)
with E? [b1|Pt < C’t} =E; [bl‘Pt < Ct] due to the same fact as above. Using Equations (A.9)

and (A.10), we can write the firm’s best estimate of the modern capacity’s value as:

V(P X Cu) = BB 2 C) (B [bo] B = C] P + P Jo B [CU|P > G /)

PP <Oy (Et [b1|Pr < €] Pfl) , (A.11)

We now notice the following relations involving the P probabilities in Equation (A.11):

Py(P, > Cy) = P, (Ct —Edder] _pe - Et[ct]) =N (pt - Et[ct}) , (A.12)

O't(Ct) - O't(Ct) O't(Ct)

where p; = In(F;) and N(.) is the cumulative standard normal distribution function. The
last equality in Equation (A.12) follows since ¢; is normal, with conditional expectation E;|[c;]

and conditional variance o?(c;). For similar reasons, we also have the relation:

O't<Ct)
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We further notice about the physical expectations in Equation (A.11):23

P > Gy = eflaltsoile)

oi(ct)
]Et [Ct‘Pt 2 Ct] == Et [ect E (A14)
t— t[ct}
N [Pk
B [n|P<C] = E [eh’ T (OO >‘Pt<0t:|
_ g [eln(?@(‘?ﬁ“ﬁg )+(=Bue p ct]
_ (B +-BE e+ 2B )
N[Ef[cfuu B1)o2 (1) p,}
« EU[Z(]Q,, (A.15)
N Bt ]
E, [bQ‘Pt > Ct] = E, |:eln :5(7311“/326; (Ce)* )‘Pt > Ct:|
= w0 2 )
_ (A ) B e+ 5 (1) 0% ()
pi—Ei[ci] —(1=B2)07 (ct)
xN{ ) } (A.16)
N [Pt—Et[Ct]:|
oi(c)

Equations (A.12) to (A.16) show that the firm’s best estimate of the modern capacity’s
value hinges on the conditional expectation and conditional variance of the log of the modern-
capacity cost parameter, ¢;. Given that ¢, ¢, and E?[c;] = a; + 3, X; are multivariate
normal at each time ¢, the conditional expectation of the log cost parameter (i.e., the firm’s

best estimate of the value of that parameter) is equal to:

]Et[ct] = C;'r’, (Al?)

where ¢; = [1, ¢, E? (¢;)], and i = E[c;c}] "' E[cicy] is a [3 x 1] vector containing the optimal

combination weights. Moreover, its conditional expectation is equal to:

o2(cy) = o*(c;) — m'var(c,)n, (A.18)

ZThe closed-form solutions in Equations (A.15) and (A.16) can be obtained by direct evaluations of the
integrals defining the conditional expectations stated in those equations.
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Figure A.1. The Relation Between the Modern Factory’s Value Estimate and its Expected
Log Production Cost The figure plots the firm’s estimate of the modern capacity’s value, V*(P;, X;; Ct,. ),
against its estimate of the log cost value at which it would be able to operate that capacity, E¢[c:], separately
for p; = 0.00, 0.25, and 0.50. The values for the other parameters are stated in the text.
where 02(¢;) is the unconditional variance of ¢;, and var(c;) the unconditional [3 x 3] variance-
covariance matrix of the predictor variable vector c;.

Figure A.1 plots the firm’s best estimate of the modern capacity’s value, V*(P,, Xy; Ct,.),
against its estimate of that capacity’s log production cost, E;[¢], for p; equal to 0.00, 0.25,
and 0.50. The figure assumes that r = 0.04, 6 = 0.06, and o = 0¢(¢;) = 0.20. In line with

intuition, the figure suggests that the firm assigns a lower value to modern capacity when it

expects that it has to operate that capacity at a higher production cost.

A.1.3 Valuing the Growth Option

We value the firm’s growth option as a binary option allowing the firm to pay the investment
outlay I to obtain the underlying modern capacity. Assuming that the firm only consults
the stock market at the current time ¢ (i.e., that it only ever observes investors’ estimate of
the log cost of modern capacity, EY(c;), at that time), it is well-known that it is optimal for
the firm to exercise the growth option when the output price P, exceeds the fixed threshold
P. To identify that threshold, denote by 7(P,) the random amount of time until the output

price reaches the threshold. We can then compute the growth option’s value conditional on
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the current best estimate of ¢;, F/(P;; X3, Ct,. ), using the risk-neutral expectation:

F(Py; Xy, C,.) EP [e7 P (V*(P; Xy, Cry) — 1)]

= (VX(P; Xy, Cy) — 1) (%)ﬂl , (A.19)

where the last equality follows from Eg [e*"T(P t)} = (Pt / P) ' The firm chooses P so as to

maximize the value of the growth option. As a result, P solves the equation:

OV*(P; Xy, Ciy) (g)ﬁl g (V(PiX ) = 1) <§)51 0 (4.20)

oP P P P ' '
Since Equation (A.20) cannot be solved for P in closed-form, we need to numerically derive
the optimal output-price value at which the firm exercises the option.

Under the more realistic assumption that the firm continuously tracks the evolution of
investors’ best estimate of the log cost at which it could operate modern capacity, EY (c;), the
valuation of the growth option becomes significantly more challenging. The first reason is
that the growth option’s value now depends on two stochastic variables, P, and X;.?* The
second is that the option’s value is now time-dependent since the firm continuously adjusts
the weights in its optimal log cost prediction, E;(c,), associated with the log cost at which
operates its most recently installed capacity, ¢, , and investors’ estimate of the log cost at
which it could operate modern capacity, EZ(c;). We shed more light on how the firm adjusts
the weights in the next section. Under these assumptions, the value of the growth option,

now denoted by F(FP;, X;; Ct,. ), needs to fulfill the partial differential equation (PDE):

OF*? oOF OF

OF 1 ,.,0F

o " L o2p, _w Xox

which includes no cross-term since dP;dX; = 0 by assumption.

24Notice that cgx does not change until the firm exercises the growth option.
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We can use a finite difference method to find the growth option’s value under the new
assumptions, approximating PDE (A.21) and solving it subject to boundary conditions. In
particular, we could assume that F(P;, X;; Cy, ) = max(V*(P;, X3; Cy. ) — I, 0) at a sufficiently
high time ¢ (upper time boundary). Next, we could rely on limp, o F' = 0 and limp, ;o F' =
V*(P;, Xy;Cy,.) — I at the upper and lower output price boundary, respectively. We could
use limy, .o F' = F(P;, X3;0) and limy, , o, F' = 0 at the upper and lower optimal investors’
estimation variable boundaries, respectively.?> Moving backward from the terminal date, we
could then always first find the continuation value and second replace that with the early
exercise payoff, V*(P, Xy; Cy,. ) — I, if the payoff exceeded the continuation value.

Valuing the growth option using the above approach, we obtain conclusions in complete
agreement with those obtained assuming that the firm only consults the stock market at the
current time t. In particular, fixing time ¢ and plotting the areas in which the firm invests
and does not invest in P,-X; space, we find that the threshold drops more rapidly with X;
the more attention the firm pays to investors’ log cost estimate. More intuitively, a higher

investors’ log cost estimate makes the firm more reluctant to invest into modern capacity

especially in those times in which the firm assigns a lot of weight to that estimate.

A.2 Proof of Proposition 1

In the last section, we have established that the firm optimally uses a least-squares regression
to combine the log cost at which it operates its most recently installed capacity, ¢, , and
investors’ estimate of the log cost at which it could operate modern capacity, E; [¢;], into its
own prediction of the log cost at which could operate modern capacity, E;[c;]. More technically,
we have shown that: E;[¢;] = cjn, where, as we indicated, ¢; is a vector containing one and

the two predictors and m is a vector containing the optimal combination weights. In this

25To understand the limy, 0 F = F(P;, X:;0) boundary condition, notice that X; = 0 implies that
investors are certain that the cost at which the firm could operate modern capacity is consistently zero,
leading the firm to consistently set its optimal log cost estimate to zero, too. In that case, F(P;, X3;0) is
simply the value of a growth option on modern capacity producing output without costs. We can easily find
the value of such a growth option using standard techniques (see again Dixit and Pindyck (1994)).
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section, we now study under which circumstances the firm optimally decides to overweight
one predictor at the cost of the other. To do so, we first derive closed-form solutions for the
optimal combination weights 7. We then study the effect of the length of time since the firm

acquired its most recently installed capacity on those closed-form solutions.

A.2.1 The Optimal Combination Weights

Let us denote the optimal weights on the log cost at which the firm operates its most recently
installed capacity, ¢, , and on investors’ estimate of the log cost at which it could operate
modern capacity, EZ[c;], by Net,e and 7)gs|,), respectively, and collect those weights in the vector

S

n = [TICf,K, ]Ef[ct]]/ . Using the Frisch-Waugh-Lovell theorem, we can show that:
n° = var(c) *cov(c, cf), (A.22)

where ¢ = [c;,., EP[c;]], var(cf) is the [2 x 2] variance-covariance matrix of c3, and cov(c, cf)

the [2 x 1] covariances vector between ¢; and c;. Writing out Equation (A.22), we obtain:

_ var(E7 (c;))cov(ct, e, ) — cov(cy,, EZ (cr))cov(c, B (ct)) A.23
Mty var(ctk)var(Ef(Ct)) - COV(Ct;m t (Ct)) , ( . )
5 — cov(ey cov(ct, ¢t
S var(ce,, Jeov(cy, E2 (¢p)) (ctp EF (cr))cov(cy, K)' (A‘24)

var(cg,. )var(Ef () — COV(CtK, F(cr))?

We next denote the date on which the firm last acquired capacity (namely, the K factory)

by tg, with tx < t. Using that definition, we are able to write ¢; as:
L., L.,
e =co+ (v — 55 W = cpye + (v — 55 )t —tx) + EW — Wiy). (A.25)
Using Equation (A.25) in cov(cy, ¢, ), we obtain:

covlen ) = covlea + (7~ 5E)(E 1) + EOV; — W), o)

= cov(Cty, Cty ) = var(c, ). (A.26)
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We next recall that ¢; and X, are multivariate normal, allowing us to write X, as a linear
combination of ¢; and some independent normal variable. Denote the weight on ¢; in that

linear combination by ¢;, we are able to rewrite cov(cy, EY (¢;)) as:

cov(cy, Ef(ct)) = cov(c, ap + B Xy) = cov(c, Bipicr)

= Brpicov(ce, cr) = PBrprvar(cy). (A.27)

We are finally able to rewrite cov(cy,, E(c;)) as:

COV(CtmEf(Ct)) = cov(Cy, v + BiXy) = cov(cyy, Brpic)

= Biprcov(ciy, i) = Brovar(cy,. ). (A.28)

Plugging Equations (A.26), (A.27), and (A.28) into ., and 7gs(,) in, respectively,

Equations (A.23) and (A.24), we can rewrite those solutions as:

L B - (ea)arte)
r var(EZ (¢;)) — (Bpr)?var(cyy, )’

_ Brpr(var(c;) — var(ey,))
T T (B (@) — (B Pvar (e ) (4.30)

(A.29)

A.2.2 Varying the Time Since the Firm Last Acquired Capacity

In this section, we examine how the length of time since the firm last installed capacity affects
the combination weights, 7., and 7gs (), in its optimal forecast of the log cost at which it
could operate modern capacity, E;(c;). To that end, we fix the current time ¢ but allow the
time at which the firm last installed capacity, tx, to vary. Doing so, we alter the variance of
and its covariances with both ¢, and E?(c;) due to the fact that:

CtK

var(c, ) = var (co + (v — %52)15;( + {WtK> = Ey, (A.31)

but do not alter the variances of ¢; and EY(c;) or their cross-covariance.
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Starting with the case in which the firm just acquired its most recent capacity unit (i.e.,
the production unit indexed by K'), we have ¢t = tx and ¢; = ¢,.. In turn, Equations (A.29)
and (A.30) then show that 7., =1 and ngs(,) = 0, leading to the intuitive conclusion that
the firm pays no attention to investors’ prediction when it can perfectly infer the cost at
which it can use modern capacity from its most recently installed capacity.

To establish how 7., ~ changes as we let ¢ fall relative to ¢ and thus raise the time since

the firm last acquired capacity, we take the partial derivative of Ner,e With respect to tk:

377%( - (Bupr)*€? (var (B (¢;)) — (Bt¢t)2var(ct))‘

e (var(ES(er)) — (Bupr)var(cr, )2 (A-32)

We now notice that since Equation (A.27) implies that var(c;) times var(E? (c;))— (Bips)*var(c;)

is equal to var(c;)var(E?(c;)) — cov(cs, EF (¢;))? and as it also holds that:
var(c,)var(E? () — cov(cy, EY (¢))* = var(cy)var(E? (¢;)) (1 — pith(Ct)) >0, (A.33)

with p? . . the squared correlation between ¢, and E? (¢;), the numerator and the denomi-
ct,E t

v (ct)
nator on the right-hand side of Equation (A.32) is positive. The upshot is that the partial
derivative is positive, implying that a longer time since the firm last acquired capacity leads
it to pay less attention to its own information and more to investors’ information.

To see how 7gs(.,) changes as we let tx fall relative to ¢ and thus raise the time since the

firm last acquired capacity, we take the partial derivative of NES (cr) with respect to tk:

OMlgg (e _ —Brspe(var(Ey (cr)) — (Bepe)*var(cey.)) + (Buspr)® (var(cr) — var(cy,)
Ot (var(BF (ce)) — (Broe)?var(cr,c ))?
_ —Beplar(BF () — (Bupy)*var(cr)) (A.34)

(var(EP (cr)) — (Bipe)?var(cy, )2

We now notice that Ef (c1) = oy + 5 X; and that X, can be written as a linear combination of
¢; and an independent normal variable. It follows that var(E?(c,)) is equal to (Bp;)*var(c;)

plus some positive summand. Thus, var(E7(c;)) — (Bipr)?var(c;) > 0, implying that the sign
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of the partial derivative is identical to the sign of —f;¢;. Under the assumption that X;
correlates positively with ¢;, the sign of —f;¢, is negative, rendering the partial derivative in
Equation (A.34) negative. The implication is that a longer time since the firm last acquired
capacity leads it to pay more attention to investors’ log cost information.

We finally confirm that 7., (7gs(,)) moves toward zero (one) as we choose a high current
time t and then let the time since the firm last acquired capacity go to infinity. To establish
limy, 0 Newpe = 0, we notice that a lower tx does not influence the numerator on the right-
hand side of Equation (A.29) but increases the positive denominator, moving Ney,, toward
zero. To establish lim,, o NES () = 1, we notice that a lower x5 makes the right-hand side of
Equation (A.30) move toward S;p;var(c;)/var(E?(c;)), which, according to Equation (A.27),
is equivalent to cov(c;, Y (¢;))/var(E? (c;)). Since E7(c;)) is an unbiased predictor, we finally

have cov(c;, EY (¢;)) /var(EP (c;)) = var(IE; (¢;)) /var(EP (c;)) = 1.

Appendix B Estimating Capacity Overhang

In this appendix, we offer more details about how we estimate capacity overhang using the
stochastic frontier model methodology advocated in Aretz and Pope (2018). To do so, recall

that Section (3.1) states that their stochastic frontier model can be written as:
In(K;) = ay + B'X ¢+ vig + i, (B.1)

where In(K; ;) is firm 4’s log installed capacity at time ¢, X;; is a vector of optimal capacity
determinants, v;; ~ N(0,0?) is the log optimal capacity residual, and u;; ~ N1 (v Z;;, 02) is
the log capacity overhang residual. In turn, Z;, is a vector of capacity overhang determinants,
and N(.) and N*(.) denote the cumulative normal distribution and the cumulative normal
distribution truncated from below at zero, respectively. Finally, 3 and ~ are both parameter

vectors, o2 and o2 are parameters, and «y, is an industry fixed effect.
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We use maximum likelihood methods to estimate the parameters of stochastic frontier
model (B.1) on a recursive basis (see Kumbhakar and Lovell (2000)). The first estimation
window stretches from July 1963 to December 1980 (which is directly before the start of our
sample period). We roll forward the end dates of the windows on an annual basis, so that
the second window stretches from July 1963 to December 1981. Equipped with the estimates

2 2
€i,t0u+Y'2i 10,

e and

from the window ending in December of year ¢ — 1, we next calculate p;, =
0}y = 0u0y/+/02 + o2 for each firm 7 and each month in year ¢, where €;; = u;; + vi;. We

finally calculate an estimate of the capacity overhang of firm ¢ in month ¢ from:

n(—pg, /ot ) | (B.2)

ﬁ@ :EuL 61'7,ZZ'7 :/L;k +U: (ﬁ
o= Bl Bl =1t 7 \ Ny o)

where n(.) and N(.) are the standard normal density function and the cumulative standard
normal distribution function evaluated at their input arguments, respectively.

In line with Aretz and Pope’s (2018) main specification, we proxy for the log of installed
capacity, In(kK; ), using the log sum of gross property, plant, and equipment and long-term
intangible assets. Conversely, we choose as optimal capacity determinants in X, the log of
sales over the prior four fiscal quarters; the log of costs of goods sold over that period; the
log of selling, general, and administrative expenses over that period; the log of annualized
volatility estimated from daily returns over the prior twelve months; the conditional market
beta obtained from a regression of the daily excess stock return on the contemporaneous, the
one-day lagged, and the sum of the two, three, and four day lagged excess market return
over the prior twelve months, with the market beta estimate being the sum of the three slope
coefficient estimates; and the log risk-free rate of return. As capacity overhang determinants
in Z,;, we choose the maximum of the sales decline over the prior four fiscal quarters and
zero; the maximum of the sales decline from a stock’s historical maximum sales to its sales

four fiscal quarters ago and zero; and a dummy variable equal to one if net income is negative
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over the prior four fiscal quarters and else zero. We finally choose Kenneth French’s 49 SIC
code industry classification scheme to construct the industry fixed effects, ay,.28

To improve the timeliness of the capacity overhang estimate, we follow Aretz and Pope
(2018) in using quarterly accounting data whenever possible. To be specific, whenever
quarterly data are available, we use the sum of gross property, plant, and equipment and
long-term intangibles from the most recent prior fiscal quarter and the trailing sums of costs
of goods sold and selling, general, and administrative expenses over the prior four most
recent quarters. Whenever those data are not available, we use the sum of gross property,
plant, and equipment and long-term intangibles, costs of goods sold, and selling, general,
and administrative expenses from the prior most recent fiscal year. In line with standard
conventions, we assume that quarterly data are reported with a two-month accounting gap,
while annual data are reported with a three-month gap. We obtain the market data required
to calculate capacity overhang from CRSP, the accounting data from Compustat, and the

market return and risk-free rate of return data from Kenneth’s French’s website. We winsorize

all variables used in stochastic frontier model (B.1) at the first and last percentiles per month.

26See <http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/Data_Library/> for details.

66



Appendix C Additional Robustness Tests
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Table C.2. Effect of Capacity Overhang on Investment-to-Stock Price Sensitivity: Different Fixed
Effect Specifications

This table presents the results from regressing investment on various combinations of Tobin’s @), capacity
overhang, a dummy variable equal to one if capacity overhang is in the bottom tercile and else zero, a
dummy variable equal to one if capacity overhang is in the top tercile and else zero, an interaction between
Tobin’s @ and capacity overhang, interactions between Tobin’s () and the dummy variables, and controls
using different fixed effect specifications. Panel A uses SIC4 industry classification to calculate fixed effects,
while Panels B and C use FIC100 industry classification (Hoberg and Phillips (2016)) to the same end. The
controls are size, cash flow, and three-year stock returns. The plain numbers are parameter estimates, while
those in parentheses are standard errors dual-clustered at both the firm and year level. Note that the table
shows only the parameter estimates and ¢-statistics for the most relevant regressors. All regressions include
static firm fixed effects and dynamic industry-year fixed effects. The final rows of the table also show the
number of observations and the adjusted R-squared (R?). The definitions of the regression variables are
provided in the caption of Table 1. The sample period is 1981 to 2019.

Panel A. Linear Effects With SIC4 Industries

Invcapex InvcaPEX&R&D Invaassets Invcapexs Invindadj InvcapPeEx&Acq  Invan

(1) (2) (3) (4) (5) (6) (7)

. 0.684%** 1.198*** 6.397*** 0.865%** 0.662%** 0.862%** 1.471%%*
Tobin Q@ (0.071) (0.123) (0.355) (0.090) (0.082) (0.095) (0.156)
Overhan —3.272%%* —5.858*** —20.430%** —3.087*** —3.182%** —6.414%** —9.931%**

g (0.240) (0.346) (1.265) (0.291) (0.306) (0.348) (0.512)
. 0.458%** 1.227*** 2.396%** 0.240** 0.447%** 0.955%** 1.925%**
Overhang x Tobin @ (9,086) (0.157) (0.542) (0.103) (0.106) (0.135) (0.216)
Firm Controls Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
Year X Industry FE Yes Yes Yes Yes Yes Yes Yes
Observations 91,150 91,150 91,150 78,241 91,150 91,150 91,150
R2 0.669 0.733 0.389 0.729 0.848 0.471 0.573
Panel B. Linear Effects With FIC 100 Industries
Invcapex InvcaPEX&R&D Invaassets Invcapexs Invindaadj InvcapPeEx&Acq  Invan
1) (2) 3) (4) (5) (6) (7)

‘ 0.620%** 1.181%%* 6.205%*%  0.775FF*  0.463%** 0.819%** 1.438%%*
Tobin Q (0.072) (0.127) (0.348) (0.091) (0.107) (0.101) (0.158)
Overhan —2.998*** —5.44T*** —20.863*** —2.894%** —2.866%** —6.417%** —9.861%**

g (0.234) (0.342) (1.406) (0.295) (0.391) (0.427) (0.608)
. 0.499%** 1.210%** 2.500%** 0.322%** 0.515%** 0.980*** 1.950***
Overhang x Tobin Q@ (( o95) (0.164) (0.551) (0.104) (0.136) (0.157) (0.222)
Firm Controls Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
Year X Industry FE Yes Yes Yes Yes Yes Yes Yes
Observations 75,456 75,456 75,456 65,251 75,456 75,456 75,456
R2 0.660 0.738 0.347 0.721 0.551 0.422 0.544

Statistical significance levels: *** p—value<0.01, ** p—value<0.05, * p—value<0.10.
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Panel C. Tercile Effects With FIC 100 Industries

Invcapex InvcaPEX&R&D Invaassets Invcapexs Invingadj InvcapPeExs&Acq  Invan

(1) (2) 3) (4) (5) (6) (7)

. 0.893%** 1.758%** 7.332%** 0.892%** 0.725%** 1.544%** 2.550***
Tobin Q (0.062) (0.090) (0.305) (0.000) (0.062) (0.094) (0.126)
OverhangTercilel 0.468*** 0.609%** 3.792%** 0.451%** 0.181 1.892%** 2.180%**

(0.109) (0.159) (0.628) (0.119) (0.173) (0.209) (0.276)
OverhangTercile3 —0.930*** —1.799*** —6.545%** —0.830%*** —1.022%** —1.597%** —2.84T7***

(0.131) (0.180) (0.690) (0.153) (0.206) (0.200) (0.280)
OverhangTercilel x Tobin Q —0.228*** —0.381*** —1.362%** —0.256%** —0.167** —0.679%** —0.824%**

(0.050) (0.085) (0.330) (0.057) (0.072) (0.092) (0.135)

. . 0.141** 0.509%** 1.468*** 0.135% 0.164* 0.054 0.591%**
OverhangTercile3 x Tobin @ (9 064) (0.103) (0.338) (0.067) (0.092) (0.098) (0.139)
Firm Controls Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
Year x Industry FE Yes Yes Yes Yes Yes Yes Yes
Observations 75,372 75,372 75,372 65,182 75,372 75,372 75,456
R? 0.665 0.748 0.375 0.740 0.553 0.430 0.559

Statistical significance levels: *** p—value<0.01, ** p—value<0.05, * p—value<0.10.
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Table C.3. Effect of Capacity Overhang on Investment-to-Stock Price Sensitivity: Controlling for
CEO Changes

This table presents the results from regressing investment on various combinations of Tobin’s @), capacity
overhang, a dummy variable equal to one if capacity overhang is in the bottom tercile and else zero, a dummy
variable equal to one if capacity overhang is in the top tercile and else zero, an interaction between Tobin’s @
and capacity overhang, interactions between Tobin’s @) and the dummies, an interaction between Tobin’s ) and
a CEO dummy equal to one in years in which there is a CEO change and else zero, and controls. Columns (1)
to (3) (alternatively, (4) to (6)) use different investment proxies as dependent variable. The controls are size,
cash flow, three-year stock returns, and the CEO change dummy. The plain numbers are parameter estimates,
while those in parentheses are standard errors dual-clustered at both the firm and year level. Note that the
table shows only the parameter estimates and t-statistics for the most relevant regressors. All regressions
include static firm fixed effects and dynamic industry-year fixed effects derived from three-digit SIC industries.
The final rows of the table also show the number of observations and the adjusted R-squared (R?). The
definitions of the regression variables are provided in the caption of Table 1. The sample period is 1981 to 2019.

Panel A. Linear Effects Panel B. Tercile Effects
Invcapex Invcapexgr&p Inwvan  Invcapex InvcapeExgreDp  Invau
1) (2) (3) (4) (5) (6)

. 0.450%** 1.008*** 1.411%%* 0.705%** 1.709%*** 2.479***
Tobin Q (0.069) (0.165) (0.170) (0.045) (0.114) (0.172)
Overhan —2.289%** —4.8T1*** —9.423%**

g (0.237) (0.506) (0.935)
. 0.448%*** 1.190*** 1.662%**
Overhang x Tobin (0.087) (0.204) (0.252)
0.028 0.046 —0.863* -0.027 —0.158 —1.160**
CEO Change (0.137) (0.287) (0.440) (0.126) (0.269) (0.450)
. —-0.046 -0.157 0.084 —0.030 -0.105 0.144
CEO Change x Tobin Q (0.069) (0.149) (0.204) (0.064) (0.141) (0.192)

. 0.488%** 0.817*** 2.566%**
OverhangTercilel (0.117) (0.188) (0.313)

. —0.591%** —1.354*** —2.42T7%%*
OwverhangTercile3 (0.094) (0.226) (0.420)

| ok | Fokk | ok
OverhangTercilel x Tobin Q ?01829) (204332) ?08?24)

) , 0.114%* 0.433%%* 0.438%*
OverhangTercile3 x Tobin Q (0.045) (0.119) (0.165)
Firm Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year X Industry FE Yes Yes Yes Yes Yes Yes
Observations 46,990 46,990 46,990 46,990 46,990 46,990
R? 0.732 0.797 0.591 0.735 0.804 0.603

Statistical significance levels: *** p—value<0.01, ** p—value<0.05, * p—value<0.10.
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